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1 Paradoxes1

1.1 Truth and the problem of paradoxes2

In the first approximation, a reasonable requirement on the definition of truth3

seems that a sentence such as “dpe is true”1 has the same truth conditions4

as p itself, i.e.5

dpe is true↔ p, (1)

which we call the T–equivalence for p.6

Tarski’s Convention T is the philosophical position that these, called T–7

equivalences, for all sentences p, not only derive from the conceptual content8

of “truth,” but are also all there is to it[5](1).9

The infamous Liar paradox consists in a sentence, called λ, which is “λ10

is false,” i.e. λ = ¬Trdλe. It yields the following problem: if we substitute λ11

for p in the T–equivalence, we obtain (Tarski 1936):12

dλe is true↔ λ↔ dλe is false

The problem is that if the above holds, then saying that λ is true, or that13

it is false, is equally problematic.14

Formally, given a language L, which is sufficiently strong, so that it can15

encode its own syntax in much the same way as Gödel encoded arithmetic16

∗Research project supervised by Denis Bonnay, Département d’Etudes Cognitives,
Ecole Normale Supérieure Paris, denis.bonnay@ens.fr

1Here dpe represents the name of the sentence p. In the rest of this paper, for notational
convenience p and dpe will be used interchangeably.
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in arithmetic itself, then there can be no L–formula Tr(x) which defines the17

set {dφe|φ is true in L} (where dφe denotes the formula that encodes the18

sentence φ) i.e. a formula which is true of (the codes of) all true sentences19

and false of the false ones[13].20

This is quite problematic, for truth is a fundamental concept in philo-21

sophical discourse, or the scientific enterprise for that matter. In particular,22

as McGee[10] remarks, it is difficult to imagine a concept more crucial to23

understanding the relationship between language and the outside world than24

truth. Therefore, it is imperative to find a concept of truth that is clear,25

coherent and that avoids paradoxicality such as that resulting from the liar26

sentence.227

1.2 Proposed solutions28

1.2.1 Tarski29

Tarski’s solution is to start from the target language, L0, and introduce30

another language, L1 which contains a (coding of) all sentences and a truth31

predicate Tr0 for L0, i.e. a predicate that is true of all (codes of) sentences of32

L0 and false of all other elements. Similarly, one can define L2 which contains33

a truth predicate Tr1 for L1 and so on.34

This makes formulation of λ impossible, for in this framework it would35

have to be of the form ¬Trndλe for some n ∈ N, which is, because of the36

occurrence of Trn, a sentence of Ln+1, therefore λ would have to be a sentence37

of Ln, which contradicts the occurrence of Trn.38

However, this solution remains unsatisfying. From a linguistic point of39

view, it is counterintuitive that one would be talking in and switching be-40

tween different languages in the proposed hierarchy, each of which does not41

contain a truth predicate for itself.42

1.2.2 Kripke43

On the basis of this observation, Kripke[8] endeavoured to find a way in which44

a language could contain its own truth predicate by adding a “neutral” truth45

value. That is, sentences are allowed to be, in addition to true or false,46

simply neither of the two. Kripke then shows that there is a possibility47

of constructing a truth predicate that satisfies all the T–equivalences. In48

2There is an interesting parallel with Russel’s Paradox that shook the foundations of
set theory, which is a similarly crucial notion in mathematical reasoning. A solution was
needed in the form of a new set theory that avoided the paradox and could yet be agreed
upon by the mathematical community as a meaningful basis, a role Zermelo-Fraenkel
eventually came to fulfill.
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particular, λ is no longer problematic if we consider it neither true nor false.49

On the contrary, sentences that are true or false are said to be grounded.350

Clearly, Kripke is committed to explaining how a truth predicate can be51

defined so that contradictions like the liar paradox and all others are avoided.52

1.2.3 Leitgeb53

Another approach is offered more recently by Leitgeb[9] who retains the54

classical scheme (i.e., disallowing neutral truth values) but argues that the T–55

equivalences should not be required to hold for all sentences[7]. In particular,56

it should only hold for sentences that are said to be grounded.57

Leitgeb’s commitment is to provide a criterion that decides which T–58

equivalences hold, and in particular it is desired to be such that it rules59

out all the problematic sentences and leaves as many of the others in as60

possible. McGee[11] has shown that taking simply this restriction, the kinds61

of candidate sets of grounded sentences is virtually unrestricted. Therefore62

a more restrictive definitionis required, for which Leitgeb employs the notion63

of dependence.464

1.3 Problem statement65

Informally, groundedness is based on a notion of reference[6], for grounded66

are those entences that either not contain the truth predicate at all, or where67

the sentences to which they apply the truth predicate can be traced back68

to non–semantic states of affairs: therefore, sentences that do not refer to69

themselves[14].70

For instance, a sentence that says “d2+2 = 4e is true,” formally Trd2+2 =71

4e, refers to 2+2=4 which is a “non–semantic state of affairs,” hence the72

sentence is grounded. Similarly, “dd2 + 2 = 4e is truee is true,”, refers to73

2+2=4, although indirectly, but therefore it is also clearly grounded. On the74

other hand the liar sentence, λ, refers to itself, which implies an infinite chain75

of sentences that refer to the next that never reaches a ground, hence λ is76

not grounded.77

Both Kripke’s and Leitgeb’s approach use this notion of groundedness.78

Therefore, one would expect that they agree about which sentences are79

grounded.80

3More precisely, Kripke calls grounded those sentences that are true or false in the least
fixed point (cf. section 2.1). This is essential, for sentences like the truth teller τ , which
says “dτe is true,” although not paradoxical, are intuitively not grounded, although they
can take a truth value in a non–least fixed point[5].

4cf. section 2.2.
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Although they agree about the above examples, Leitgeb[9]5 shows that81

this is not the case in general. The purpose of this present paper is to find82

which parameters cause this difference, so as to find by which adaptation of83

either approach an agreement can be reached.84

2 Groundedness85

Now the approaches of Leitgeb[9] and Kripke[8] will be looked at in formal86

detail.87

2.1 Kripke88

Given a classical6 language L rich enough to allow its own syntax to be89

expressed in it. Let iL interpret L into a domain D by the usual rules. Tr(x)90

will be the truth predicate, which will be interpreted by a partial function91

iTr : D  {0, 1}, to form the language LTr.92

Supposing we have a set E ⊂ D of (codes of) LTr–sentences that are93

considered true, and similarly A ⊂ D for false sentences, then the iL can be94

extended to cover all of LTr in the following way:95

iLTr(E,A)(Tr)(d) =


1 if d ∈ E
0 if d ∈ A
↑ otherwise

(2)

and the semantic values of other formulas involving Tr are defined by means96

of Kleene’s strong three-valued logic.97

Given LTr(E,A) we can find

J(E,A)
def
= {φ ∈ LTr|φ is true under iLTr(E,A)} (3)

J−(E,A)

def
= {φ ∈ LTr|φ is false under iLTr(E,A)} (4)

For notational convenience, given any set E ⊂ LTr a “set of negatives” is98

defined: ¬E def
= {φ|¬φ ∈ E}. Since LTr(E,A) is a closed language, we find99

that J−(E,A) = ¬J(E,A).100

If we generalise the above procedure we find a sequence (Eα)α∈On as101

follows: E0 = ∅, Eα+1 = J(Eα,¬Eα) and Eβ =
⋃
α<β Eα.102

The monotonicity of the sequence (Eα)α∈On together with the given that103

the class of sentences is a set yields that there is a fixed point, hence a104

smallest one, which we will call E∞.105

5cf. section 2.3.
6i.e. two–valued
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A sentence φ of LTr is defined to be grounded if it has a truth value (i.e.106

true or false) in LTr(E∞,¬E∞). Hence φ is grounded iff φ ∈ E∞ ∪ ¬E∞.107

2.2 Leitgeb108

Leitgeb employs a similar construction, with a classical language L that will109

be enriched with a two–valued truth predicate Tr to form LTr. If φ ∈ LTr110

then ValΨ (φ) denotes the truth value in the standard model of arithmetic111

enriched with a truth predicate which has extension Ψ ⊂ LTr (and due to112

totality the anti–extension is the complement of Φ). This is to say, Ψ is the113

set of sentences that we assume to be true.114

We define that φ depends on Φ ⊂ LTr iff for all Ψ1,Ψ2 ⊂ LTr, we have115

that if ValΨ1 (φ) 6= ValΨ2 (φ) then Ψ1∩Φ 6= Ψ2∩Φ. Then Leitgeb shows that116

Dφ
def
= {Φ ⊂ LTr|φ depends on Φ} is a filter. If Dφ has a least element Φ, we117

say φ depends essentially on Φ.118

Similarly D−1(Φ)
def
= {φ ∈ LTr|φ depends on Φ}. Leitgeb shows D−1 to119

be monotonic, and for any Φ, D−1(Φ) is an algebra.120

We define an ordinal sequence (Φα)α∈On as follows: Φ0 = ∅, Φα+1 =121

D−1(Φα) and Φβ =
⋃
α<β Φα. Due to Tarski’s Fixed Point Theorem, there is122

a least fixed point of this sequence that we will call Φlf.123

A sentence φ is grounded iff φ ∈ Φlf.
7

124

Clearly, the sequence (Φα)α∈On does not distinguish true and false sen-125

tences,therefore, Leitgeb[9](171) also introduces the derived sequence: Γ0 =126

∅, Γα+1 = {φ ∈ Φα+1|ValΓα (φ) = 1}, and Γβ =
⋃
α<β Γα

8.127

2.3 Comparison of Kripke and Leitgeb128

However, Leitgeb[9](185) shows that of the sets of sentences grounded ac-129

cording to his notion and Kripke’s, neither one includes the other. On the130

one hand, θ′
def
= Trd2 + 2 = 4e ∨ λ is grounded according to Kripke but not131

according to Leitgeb, as can be shown by the same reasoning as in section132

2.4.2. On the other hand, given the liar sentence λ, then one can define:133

θ
def
= Trdλe ∨ ¬Trdλe, then it is grounded according to Leitgeb but not ac-134

cording to Kripke.135

Clearly θ is grounded (and true) in Leitgeb’s scheme, since for any predi-136

cate P in a two–valued scheme P (x)∨¬P (x) holds, hence for any Φ we have137

7Leitgeb[9](169,lemma 13) that φ is ungrounded if, but not only if, there exists a
sequence (ψn)n∈N∗ with ψn ∈ LTr; ψ0 = φ and for every n ∈ N, Ψn+1 generates D(ψn)
and ψn+1 ∈ Ψn+1.

8But, as will be shown, this sequence is not the same as Cantini’s, and they do not
even lead to the same fixed point.
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ValΦ (θ) = 1. Therefore θ depends on ∅ and also on Φlf in particular9.138

However, Kripke’s system fails to make it grounded. Suppose per assurdo139

that θ ∈ ¬E∞, this means that ¬θ ∈ E∞. Then Trdλe and ¬Trdλe, absurd.140

On the other hand, suppose θ ∈ E∞. Since E∞ is a fixed point of Φ, we have141

that θ is true in LTr(E∞,¬E∞), hence either Trdλe or ¬Trdλe. This yields142

the usual paradox, since, crucially, all the T–biconditionals hold in Kripke’s143

system, also for λ. Therefore, one finds Trdλe ↔ λ↔ ¬Trdλe10,11144

2.4 Cantini145

2.4.1 Cantini’s supervaluation reformulation146

These considerations lead Cantini[1] to propose a reformulation that yields147

the fixed point E ′
∞ that includes θ. Instead of Kripke’s approach, here one148

uses a classical, two–valued interpretation of Tr.149

As in section 2.2, ValΨ (φ) represents the truth value of the formula φ150

given that the Tr–predicate’s extension is Ψ. A set Ψ ⊂ LTr will be considered151

consistent if whenever ψ ∈ Ψ, then ¬ψ 6∈ Ψ. An operator is defined as, for152

all Φ ⊂ LTr, FV(Φ)
def
= {φ ∈ LTr|∀Ψ ⊃ Φ, s.t. Ψ is consistent, ValΨ (φ) = 1},153

which is clearly monotonous. Crucially, if Φ is consistent, so is FV(Φ).154

A sequence (E ′
α)α∈On is defined as follows: E ′

0 = ∅, E ′
α+1 = FV(E ′

α) and155

E ′
β =

⋃
α<β E

′
α. Its least fixed point is called E ′

∞.156

2.4.2 Cantini’s reformulation remains more inclusive157

Cantini’s reformulation introduced in section 2.3 succesfully takes away all158

counterexamples like θ, for Leitgeb proves that Φlf ⊂ E ′
∞ ∪ ¬E ′

∞[9](185).159

However, the failure to obtain the converse inclusion, Φlf 6⊃ E ′
∞ ∪ ¬E ′

∞, still160

holds because of the mentioned counterexample: θ′
def
= Trd2 + 2 = 4e ∨ λ.161

First of all, Cantini grounds θ′, because for any Φ ⊂ LTr, ValΦ (θ′) = 1,162

hence θ′ ∈ FV(∅).12163

9Since Φlf does not have the closedness properties that languages have (in particular it
is not said that if dp ∨ qe ∈ Φlf then dpe ∈ Φlf ∨ dqe ∈ Φlf), from θ ∈ Φlf we cannot deduce
λ ∈ Φlf or ¬λ ∈ Φlf.

10These biconditionals were not required to hold in Leitgeb’s system for λ is ungrounded.
11A consequence of this reasoning is that Kripke’s “grounded” is not closed under two–

valued logical equivalence, for in the classical scheme, θ is logically equivalent to any
other tautology, including those that do not involve the truth predicate and hence are
grounded automatically. However, clearly Kripke’s set of “grounded” sentences is closed
under trivalent logical equivalence (where θ is no longer a tautology), i.e. φ ∈ Φlf and
φ ↔3 ψ implies ψ ∈ Φlf. Leitgeb’s set of “grounded” sentences, however, is closed also
under bivalent logical equivalence.

12Also θ′ ∈ E∞. Clearly, since d2 + 2 = 4e ∈ L, because we start from the model of
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However, Leitgeb shows θ′ 6∈ Φlf. The point is that θ depends on {2+2 =164

4, λ} and essentially so: clearly ValΦ∩{2+2=4,λ} (θ) = ValΦ (θ) for any Φ and165

esentiality follows from that if θ depends on Φ, then d2 + 2 = 4e ∈ Φ and166

similarly λ ∈ Φ. But since λ 6∈ Φlf, θ does not depend on Φlf and is hence167

ungrounded.168

2.5 Outline169

The main problem adressed in this paper is what will be required on either170

side of the equation Φlf ( E ′
∞ ∪ ¬E ′

∞ to yield equality.171

Section 3 will attempt to “raise” Φlf to E ′
∞ ∪ ¬E ′

∞ by presupposing a172

minimal extension of the predicate of truth in the notion of dependence. It173

will be shown in section 3.3.2 that there are still classes of sentences that174

belong to E ′
∞ ∪ ¬E ′

∞ but not to Φlf.175

Section 4 shows that if one adds a consistency requirement to the defini-176

tion of conditional dependence introduced in section 3 one obtains the same177

least fixed point E ′
∞ ∪ ¬E ′

∞ as Cantini.178

These proceedings are summarised visually in appendix 6.179

3 Conditional Dependence180

3.1 Introduction181

Following the discussion of section 2.4.2, it seems an undesirable situation182

that d2+2 = 4e,Trd2+2 = 4e ∈ Φlf but Trd2+2 = 4e∨λ ∈ Φlf, for intuitively183

it seems the latter is “true” anyway in virtue of the truth of d2 + 2 = 4e.184

This reasoning leads to the definition of conditional dependence, suggested185

by Leitgeb[9](189), in which the attention is restricted to those Ψ1,Ψ2 that186

extend a set of sentences Σ that we presuppose as true. Given any Σ ⊂ LTr,187

Definition 3.1. φ depΣ(Φ)
def
= for all Ψ1,Ψ2 ⊂ LTr s.t. Σ ⊂ Ψ1,Ψ2 it holds188

that ValΨ1 (φ) 6= ValΨ2 (φ)→ Ψ1 ∩ Φ 6= Ψ2 ∩ Φ189

3.2 General properties190

3.2.1 Preliminaries191

A number of general properties will now be established in order to show192

that the notion of conditional dependence functions along the same lines as193

arithmetic, also d2 + 2 = 4e ∈ J(∅,∅). Since we then close it as a language by Kleene’s
strong three–valued logic, where ∨(t, n) = t, the neutrality of λ doesn’t keep θ′ from being
true. Therefore θ ∈ E0, hence θ ∈ E∞.
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dependence. These mirror Leitgeb[9](161)’s lemmas 2 and 3.194

Lemma 3.1. Under the crucial assumption that Φ ⊃ Σ, are equivalent the195

following:196

1. φ depΣ(Φ)197

2. For all Σ ⊂ Ψ ⊂ LTr, ValΨ (φ) = ValΨ∩Φ (φ)198

3. ∀Ψ1,Ψ2 ⊂ LTr,Σ ⊂ Ψ1,Ψ2 → (ValΨ1 (φ) = ValΨ2 (φ) ⇔ ValΨ1∩Φ (φ) =199

ValΨ2∩Φ (φ))200

Proof. (1→ 2). Taking any Ψ ⊃ Σ, then clearly Ψ∩Φ ⊃ Σ, so by φ depΣ(Φ)201

one finds ValΨ (φ) = ValΨ∩Ψ (φ).202

(2→ 3). Given Ψ1,Ψ2 ⊃ Σ then by 2, ValΨ1∩Φ (φ) = ValΨ1 (φ) and same203

for Ψ2, so the equivalence follows.204

(3→ 1). Suppose the contrary of 1, i.e. finding Ψ1,Ψ2 ⊃ Σ, ValΨ1 (φ) 6=205

ValΨ2 (φ) but Ψ1∩Φ = Ψ2∩Φ. By the latter fact ValΨ1∩Φ (φ) = ValΨ2∩Φ (φ),206

which contradicts the former because of 3.207

Lemma 3.2. Filter properties of depΣ():208

1. If φ depΣ(Φ),Φ′ ⊃ Φ then φ depΣ(Φ′)209

2. If φ depΣ(Φ), φ depΣ(Ψ) and Φ ⊃ Σ then φ depΣ(Φ ∩Ψ)210

3. φ depΣ(LTr)211

Proof. 2: Take any Ψ1,Ψ2 ⊃ Σ. Suppose Ψ1 ∩ Φ ∩ Ψ = Ψ2 ∩ Φ ∩ Ψ.212

By φ depΣ(Ψ) and because Ψ1 ∩ Φ,Ψ2 ∩ Φ ⊃ Σ we have ValΨ1∩Φ (φ) =213

ValΨ2∩Φ (φ). On a different note with φ depΣ(Φ) we obtain ValΨ1 (φ) =214

ValΨ1∩Φ (φ) and ValΨ2 (φ) = ValΨ2∩Φ (φ), therefore ValΨ1 (φ) = ValΨ2 (φ).215

Hence φ depΣ(Ψ ∩Ψ).216

3.2.2 Formulation of the fixed point217

Definition 3.2. DΣ(φ)
def
= {Φ ⊂ LTr|φ depΣ(Φ)}218

D⊃Σ(φ)
def
= {Φ ⊂ LTr|Φ ⊃ Σ ∧ φ depΣ(Φ)}219

D−1
Σ (φ)

def
= {dφe ∈ LTr|φ depΣ(Φ)}220

The reservations in lemma 3.2 make that it is no longer guaranteed that221

DΣ(φ) is a filter. However, its restriction to above Σ, D⊃Σ(φ), is.222

Analogous to the sequence Φα defined by Leitgeb, one can introduce a223

parallel sequence (ΦAT
α )α∈On and (ΓAT

α )α∈On. The idea is again that one be-224

gins with the empty set, then takes all sentences that depend on it, and so225

on, but the difference with before is that at every step we presuppose (i.e.226

conditionalise) all grounded sentences that were true in the previous step.227
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Definition 3.3. ΦAT
0 = ∅, ΓAT

0 = ∅, ΦAT
α+1 = D−1

ΓAT
α

(ΦAT
α ), ΓAT

α+1 = {φ ∈228

ΦAT
α+1|ValΓAT

α
(φ) = 1}, ΦAT

β =
⋃
α<β ΦAT

α , ΓAT
β =

⋃
α<β ΓAT

α ,229

Interestingly, one needs this “double recursion,” where at every step in230

the expansion of the dependence set one presupposes all the truths of the231

previous step. If we would keep the conditional set Σ fixed for every instance232

of D−1
Σ (), for instance taking the set of arithmetical truths, AT, every time,233

then the problem rises that one captures the problematic Trd2 + 2 = 4e ∨ λ234

but not TrdTrd2 + 2 = 4ee ∨ λ.235

Lemma 3.3. For all Φ,Φ′,Σ,Σ′ ⊂ LTr, for all α, β ∈ On,236

1. If Φ ⊂ Φ′ and Σ ⊂ Σ′ then D−1
Σ (Φ) ⊂ D−1

Σ′ (Φ
′)237

2. (a) ΦAT
α ⊂ ΦAT

α+1 and (b) ΓAT
α ⊂ ΓAT

α+1238

Proof. 2: proven in conjunction with (c) ΓAT
α+1 ∩ ΦAT

α = ΓAT
α by induction239

on α. For α = 0, all three statements are immediate. For α = α′ + 1, (a)240

ΦAT
α ⊂ ΦAT

α+1 follows from 1.241

To find (c): (⊂) If φ ∈ ΓAT
α′+1+1 ∩ ΦAT

α′+1 then also φ depΓAT
α′

(ΦAT
α′ ). So242

1 = ValΓAT
α′+1

(φ) = ValΓAT
α′+1

∩ΦAT
α′

(φ). Because of the induction hypothesis,243

ValΓAT
α′+1

∩ΦAT
α′

(φ) = ValΓAT
α′

(φ), so φ ∈ ΓAT
α′+1.244

(⊃) If φ ∈ ΓAT
α′+1 hence ValΓAT

α′
(φ) = 1 and φ ∈ ΦAT

α′+1. Therefore245

φ depΓAT
α′

(ΦAT
α′ ) and then ValΓAT

α′+1
(φ) = ValΓAT

α′+1
∩ΦAT

α′
(φ) = ValΓAT

α′
(φ) because246

of the induction hypothesis, and the latter equals 1.247

Finally (b) follows from (c) directly.248

Hence, the same argument as before shows that the sequence (ΦAT
α )α∈On249

has a least fixed point, called ΦAT
lf .250

3.2.3 Commentary: what about falsity?251

It seems that the same argument that led from the observation of the failure252

to include phrases like Trd2 + 2 = 4e ∨ λ to the notion of conditional depen-253

dence, could also lead from failure to include phrases like Trd2 + 2 6= 4e ∧ λ254

to an adapted notion of dependence. This notion should not only specify255

which phrases we presuppose to be true, but also those that we presuppose256

to be false.257

A candidate definition could be: φAEdep Φ
def
= ∀Ψ1,Ψ2, E ⊂ Ψ1,Ψ2 ⊂ Ac :258

ValΨ1 (φ) 6= ValΨ2 (φ)→ Ψ1 ∩ Φ 6= Ψ2 ∩ Φ.259

However, if one adds a consistency requirement to the notion of depen-260

dence, as will be done in section 4, this example is evidently automatically261

taken care of as well.262
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3.3 Analysis263

3.3.1 Conditionalisation of arithmetic264

Clearly AT, the codes of all sentences that are true in the standard model265

of arithmetic, are contained in ΓAT
1 , which justifies the superscript AT, al-266

though, interestingly, the definition has never explicitly mentioned this set.267

Also, problematic examples such as Trd2 + 2 = 4e ∨ λ are now included268

in ΦAT
lf , for d2 + 2 = 4e ∈ ΓAT

lf and ValΨ (Trd2 + 2 = 4e ∨ λ) = 1 for any269

Ψ ⊃ {2 + 2 = 4}.270

3.3.2 Conditional dependence does not equal Cantini271

The question that will be of interest is whether all such problematic examples272

have been taken care of. In particular, is ΦAT
lf equal to Cantini’s least fixed273

point of section 2.4.1? This question will be answered negatively.274

Given a formula ψ ∈ LTr, one defines σψ
def
= Trdψe ∧ Trd¬ψe. The point275

is that σψ expresses an inconsistency of the extension of Tr. In particular,276

σλ = Trdλe ∧ Trd¬λe expresses an inconsistency outside ΦAT
lf , for λ 6∈ ΦAT

lf .277

3.3.3 σλ 6∈ ΦAT
lf278

Lemma 3.4. For any conditional subset Σ ⊂ LTr, any Ψ ⊂ LTr, and α ∈ On,279

1. If λ 6∈ Ψ then λ 6∈ D−1
Σ (Ψ)280

2. λ 6∈ ΦAT
α281

3. σψ depΣ(Ψ)↔ {ψ,¬ψ} ⊂ Ψ282

4. σλ 6∈ ΦAT
α283

Proof. 1: 1 = ValΣ (λ) 6= ValΣ∪{λ} (λ) = 0 but Σ ∩ Ψ = Σ (by assumption)284

and (Σ∪{λ})∩Ψ = Σ because λ 6∈ Ψ, so λ does not depend Σ–conditionally285

on Ψ. 2: if λ ∈ ΦAT
α′+1 then, since it depends on itself, λ ∈ ΦAT

α′ but λ 6∈ ∅. 3:286

(←) {ψ,¬ψ} ⊂ Ψ implies that σψ depends on Ψ even without a conditional287

set, so in particular also with any Σ. (→) Suppose, ψ 6∈ Ψ then we find288

ValΨ∪{¬ψ} (σψ) = 0 6= 1 = ValΨ∪{¬ψ,ψ} (σψ) although (Ψ ∪ {¬ψ}) ∩ Ψ =289

(Ψ ∪ {ψ,¬ψ}) ∩Ψ. The case ¬ψ 6∈ Ψ is symmetric.290

3.3.4 σλ ∈ E ′
∞ ∪ ¬E ′

∞291

Lemma 3.5. For any Ψ,Φ ⊂ LTr,292

1. If Ψ is consistent, ValΨ (¬σλ) = 1293
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2. ¬σλ ∈ FV(Φ)294

3. σλ ∈ ¬E ′
∞295

Proof. 1: Suppose ValΨ (¬σλ) = 0 then ValΨ (σλ) = 1 hence λ ∈ Ψ and296

¬λ ∈ Ψ, absurd.297

Therefore, σλ is an example that is in E ′
∞ ∪ ¬E ′

∞ but not in ΦAT
lf , hence298

E ′
∞ ∪ ¬E ′

∞ 6⊂ ΦAT
lf .299

3.4 Removing consistency requirement300

The reasoning of section 3.3.4 shows that the consistency requirement in301

Cantini’s formulation is the essential reason why σλ is always in the image302

of FV, so one could wonder whether if we take out that restriction, the303

newly obtained fixed point, ±E ′′
∞, equals Leitgeb’s conditional fixed point304

ΦAT
lf . Instead of FV one then uses for Φ ⊂ LTr, FV′(Φ)

def
= {φ ∈ LTr|∀Ψ ⊃305

Φ,ValΨ (φ) = 1}.306

In this section it will be shown that this adaptation makes ±E ′′
∞ too307

exclusive, for then there are sentences like σ2+2=4 = Trd2+2 = 4e∧Trd2+2 6=308

4e, whichexpress an inconsistency inside ΦAT
lf , that are no longer included,309

although they are in ΦAT
lf .310

3.4.1 σ2+2=4 ∈ ΦAT
lf311

Lemma 3.6. For all Σ ⊂ Ψ ⊂ LTr,312

1. {2 + 2 = 4, 2 + 2 6= 4} ⊂ D−1
Σ (Ψ)313

2. If {2 + 2 = 4, 2 + 2 6= 4} ⊂ Φ, then σ2+2=4 ∈ D−1
Σ (Φ)314

3. σ2+2=4 ∈ ΦAT
lf315

3.4.2 σ2+2=4 6∈ ±E ′′
∞316

Lemma 3.7. For any consistent Φ ⊂ LTr,317

1. If {2 + 2 = 4, 2 + 2 6= 4} 6⊂ Φ, then σ2+2=4 6∈ FV′(Φ).318

2. {2 + 2 = 4, 2 + 2 6= 4} 6⊂ FV′(Φ)319

3. For all α ∈ On, σ2+2=4 6∈ E ′
α320

4. ¬σ2+2=4 6∈ FV′(Φ)321

11



5. For all α ∈ On, ¬σ2+2=4 6∈ E ′
α322

6. σ2+2=4 6∈ ±E ′′
∞323

Proof. 1: follows from ValΦ (σ2+2=4) = 0. 2: d2 + 2 6= 4e will never be in324

any FV′(Φ) for it is false regardless of the extension of the Tr–predicate. 4:325

LTr ⊃ Φ and ValLTr
(¬σ2+2=4) 6= 1.326

3.5 Role of the T–schema327

3.5.1 Trdψe → ψ328

Following interest in the status of T–biconditionals, one can examine the329

status of the following family of formulas:330

Definition 3.4. ωψ
def
= Trdψe → ψ331

Behaviour of this phrase is determined by the exact contents of ψ. For332

instance, if ψ ∈ L and ψ is true, then clearly ωψ is a tautology in LTr, so it333

depends on ∅, and similarly if it is false then it depends on ψ.334

Taking ψ = λ, we find that ωλ = Trdλe → λ = Trdλe → ¬Trdλe is335

equivalent to λ. Hence, following the reasoning of section 3.3.3, it depends336

essentially on {λ}, hence ωλ 6∈ ΦAT
lf .337

Lemma 3.8. For all consistent Ψ ⊂ LTr,338

1. ValΨ (ωλ) = 1↔ λ 6∈ Ψ339

2. ωλ ∈ FV(Ψ)↔ ¬λ ∈ Ψ ∨ Trdλe ∈ Ψ340

3. ¬ωλ ∈ FV(Ψ)↔ λ ∈ Ψ341

4. φ ∈ E ′
∞ ↔ Trdφe ∈ E ′

∞342

5. ωλ 6∈ E ′
∞ ∪ ¬E ′

∞343

Proof. 2: (→) If the consequent is false, then Ψ∪{λ} is a consistent superset344

of Ψ but ValΨ∪{λ} (ωλ) = 0. 3: (→) ¬ωλ ∈ FV(Ψ) requires ValΨ (¬ωλ) = 1345

which can only be if λ ∈ Ψ. 4: (→) taking any Ψ ⊃ E ′
∞ then by assumption346

φ ∈ Ψ, hence ValΨ (Trdφe) = 1. (←) suppose φ 6∈ E ′
∞, then ValE′∞ (Trdφe) =347

0 contrary to the assumption. 5: using that {λ,¬λ}∩E ′
∞ = ∅. From λ 6∈ E ′

∞348

follows, due to 4, Trdλe 6∈ E ′
∞.349

To sum up, ωλ 6∈ ΦAT
lf and ωλ 6∈ E ′

∞ ∪ ¬E ′
∞350
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3.5.2 Membership is not truth in E ′
∞351

Cantini[1] shows, ωλ is true in E ′
∞, although in section 3.5.1 it is shown ωλ352

is not a member of E ′
∞.353

Therefore it becomes clear that “being true in E ′
∞” is not the same thing354

as “belonging to E ′
∞.” The latter implies the former, because φ belonging355

to E ′
∞ means φ being true under a truth predicate extending E ′

∞, i.e. for all356

Ψ ⊃ E ′
∞, ValΨ (φ) = 1. However, the inverse is not the case. For instance, λ357

is true in E ′
∞, since it is ¬Trdλe, but it is not a member of E ′

∞. Similarly,358

Trdλe → λ is true but not Trdλe → λ ∈ E ′
∞.359

3.5.3 ψ → Trdψe360

Definition 3.5. ω′ψ
def
= ψ → Trdψe361

Again, the status of ωψ is determined by ψ. If ψ ∈ L and false, then ωψ362

depends on ∅, if true, then ωψ depends on {ψ}.363

Reasoning analogous to lemma 3.8 leads to ω′λ 6∈ ΦAT
lf , ω′λ 6∈ E ′

∞ ∪ ¬E ′
∞.364

However, the full T–schema for λ, i.e. ωλ∧ω′λ is an outright contradiction,365

Trdλe ↔ ¬Trdλe, hence its negation is false under any extension of Tr13 and366

therefore it is found in E ′
∞ ∪ ¬E ′

∞. Also, being an antilogy, it depends on ∅367

and therefore ωλ ∧ ω′λ ∈ Φlf,Φ
AT
lf .368

4 Dependence with Consistency and Condi-369

tionality370

4.1 Introduction371

4.1.1 Preliminaries372

The strategy of section 3.4 was to remove the consistency requirement in373

Cantini’s formulation. However, it became too restrictive to yield equality374

with Leitgeb’s ΦAT
lf .375

The approach in this section is to add a requirement of consistency on376

the other side, that is, to Leitgeb’s definition of conditional dependence, to377

arrive at what will be called conditional c–dependence.378

Leitgeb[9](180) also considered adding this consistency requirement but379

decided not to so as to keep the theoretical assumptions of his notion of380

dependence minimal. It is nevertheless introduced here in order to find out381

if this is the missing ingredient for equality with Cantini’s E ′
∞ ∪ ¬E ′

∞.382

13In particular, not just in any consistent extension, but this is not used in the reasoning.
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Definition 4.1. φ cdepΣ(Φ)
def
= for all consistent Ψ1,Ψ2 ⊃ Σ : ValΨ1 (φ) 6=383

ValΨ2 (φ)→ Ψ1 ∩ Φ 6= Ψ2 ∩ Φ.384

Lemma 4.1. Again, the following are equivalent, under the crucial assump-385

tions that Φ ⊃ Σ and that Σ is consistent:386

1. φ cdepΣ(Φ)387

2. For all consistent Ψ ⊃ Σ, it holds that ValΨ (φ) = ValΨ∩Φ (φ)388

3. For all consistent Ψ1,Ψ2 ⊂ LTr, such that Σ ⊂ Ψ1,Ψ2: ValΨ1 (φ) =389

ValΨ2 (φ)⇔ ValΨ1∩Φ (φ) = ValΨ2∩Φ (φ)390

Proof. (1 → 2) Clearly Ψ and Ψ ∩ Φ are consistent supersets of Σ, so the391

argument is the same as before.392

Lemma 4.2. Filter properties of conditional consistent dependence, assum-393

ing that Σ is consistent:394

1. If φ cdepΣ(Φ),Φ′ ⊃ Φ then φ cdepΣ(Φ′)395

2. If φ cdepΣ(Φ), φ cdepΣ(Ψ) and Φ ⊃ Σ then φ cdepΣ(Φ ∩Ψ)396

3. φ cdepΣ(LTr)397

Definition 4.2. Dc,Σ(φ)
def
= {Φ ⊂ LTr|φ cdepΣ(Φ)}398

D−1
c,Σ(φ)

def
= {dφe ∈ LTr|φ cdepΣ(Φ)}399

4.1.2 Fixed point construction400

We define the parallel ordinal sequences exactly as in section 3.2.2, to grow401

to the least fixed point:402

Definition 4.3. Φc,AT
0 = ∅, Γc,AT

0 = ∅, Φc,AT
α+1 = D−1

c,Γc,AT
α

(Φc,AT
α ), Γc,AT

α+1 = {φ ∈403

Φc,AT
α+1 |ValΓc,AT

α
(φ) = 1}, Φc,AT

β =
⋃
α<β Φc,AT

α , Γc,AT
β =

⋃
α<β Γc,AT

α404

The proof of monotonicity is omitted, for it will be proven that the se-405

quence equals Cantini’s, which is already known to be monotonic. For the406

moment, one can assume a fixed point will be reached, called Φc,AT
lf .407

Interestingly, there is a redundancy in the double recursion, which makes408

that it could have been defined as a single one:14409

Lemma 4.3. For all α ∈ On, Φc,AT
α = ±Γc,AT

α410

14This redundancy holds also for dependency without conditionality.
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Proof. It will be used that ¬ψ cdepΣ(Φ)↔ ψ cdepΣ(Φ).411

Taking α = α′ + 1. (⊂) Suppose φ ∈ Φc,AT
α′+1 but φ 6∈ Γc,AT

α′+1. This means412

that ValΓc,AT

α′
(φ) = 0, which implies that ValΓc,AT

α′
(¬φ) = 1, hence ¬φ ∈ Γc,AT

α′+1413

so φ ∈ ¬Γc,AT
α′+1. (⊃) Suppose φ ∈ ±Γc,AT

α′+1. If φ ∈ Γc,AT
α′+1 then one is done,414

otherwise ¬φ ∈ Γc,AT
α′+1. So ¬φ ∈ Φc,AT

α′+1, which means ¬φ cdepΓc,AT

α′
(Φc,AT

α′ ), so415

one obtains φ ∈ Φc,AT
α′+1.416

Corollary 4.4. If Ψ ⊃ Γc,AT
lf and Ψ is consistent, then Ψ ∩ Φc,AT

lf = Γc,AT
lf417

As a result, the following is an equivalent formulation using single recur-418

sion:419

Definition 4.4. Γc,AT
0 = ∅, Γc,AT

α+1 = {φ ∈ D−1

c,Γc,AT
α

(±Γc,AT
α )|ValΓc,AT

α
(φ) =420

1} def
= ∆c(Γ

c,AT
α ), Γc,AT

β =
⋃
α<β Γc,AT

α ,421

and here it seemed elucidating to introduce an operator ∆c() to represent422

the recursion.423

4.2 Comparison with previous paradigm424

What results from the difference between the notion of conditional depen-425

dence of section 3 and the notion of conditional c–dependence that includes426

a consistency requirement?427

Clearly φ depΣ(Φ) → φ cdepΣ(Φ) but not the converse. In particular, it428

has been shown that σψ = Trdψe ∧ Trd¬ψe depends essentially on {ψ,¬ψ},429

but it c–depends on ∅, since it is always false if the extension of Tr is consis-430

tent.431

4.3 Reconciliation of Leitgeb and Cantini fixed points432

In this section it will be shown that Φc,AT
lf = E ′

∞ ∪ ¬E ′
∞: that, informally433

speaking, indeed Kripke’s notion of groundedness in Cantini’s formulation is434

equal to groundedness on the basis of conditional c–dependence.435

A key role in the proof is performed by lemma 4.5, which explains that436

Cantini’s supervaluation operator FV on a set Φ can be identified with con-437

sistent Φ–conditional dependence on the set ±Φ. A similar result cannot be438

obtained with a notion of dependency that does not include consistency, for439

then the maximality of Φ in ±Φ does not hold.440

Lemma 4.5. For all consistent Φ ⊂ LTr and φ ∈ LTr,441

φ cdepΦ(±Φ)↔ φ ∈ ±FV(Φ)442
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Proof. (→) take any consistent Ψ ⊃ Φ. It will be shown that ValΨ (φ) =443

ValΦ (φ) which is sufficient. Clearly Ψ ∩ ±Φ = Φ, because Ψ is consistent.444

Then Ψ∩±Φ = Φ∩±Φ = Φ, so the dependency yields ValΨ (φ) = ValΦ (φ).445

(←) if φ ∈ ±FV(Φ), clearly given any consistent Ψ ⊃ Φ one finds446

ValΨ (φ) = ValΦ (φ), which means φ cdepΦ(∅) so in particular one also finds447

φ cdepΦ(±Φ).448

Corollary 4.6. For any consistent Φ ⊂ LTr, ∆c(Φ) = FV(Φ)449

Proof. By definition ∆c(Φ) = {φ ∈ D−1
c,Φ(±Φ)|ValΦ (φ) = 1}. Using lemma450

4.5, one can rewrite ∆c(Φ) = {φ ∈ ±FV(Φ)|ValΦ (φ) = 1} which again equals451

{φ ∈ FV(Φ)|ValΦ (φ) = 1} ∪ {φ ∈ ¬FV(Φ)|ValΦ (φ) = 1}. The first term452

{φ ∈ FV(Φ)|ValΦ (φ) = 1} = FV (Φ), for if Φ is consistent, then φ ∈ FV(Φ)453

implies ValΦ (φ) = 1. Similarly, the second term {φ ∈ ¬FV(Φ)|ValΦ (φ) =454

1} = ∅, for ¬φ ∈ FV(Φ) implies ValΦ (φ) = 0.455

Theorem 4.7. For all α ∈ On, Φc,AT
α = ±E ′

α and Γc,AT
α = E ′

α.456

Proof. Immediate from defintion 4.4, lemma 4.3 and corollary 4.6.457

Corollary 4.8. Φc,AT
lf = E ′

∞ ∪ ¬E ′
∞458

It is interesting to note that a stronger result has been proven than ini-459

tially set out for: namely that not only the fixed points arrived at by Cantini460

and this dependency notion adapted from Leitgeb are the same, but also461

that every step of their construction is equal. This could lead to identify the462

which elements of these constructions are each other’s counterparts.463

4.4 Only consistency464

One could ask if only adding the consistency requirement to Leitgeb’s notion465

of dependence would have been enough to reach equivalence with Cantini’s.466

However, sentences like θ′ = Trd2 + 2 = 4e ∨ λ will still not be grounded,467

although they are so according to Cantini’s notion15.468

5 Conclusion469

5.1 Review470

In this paper the notions of groundedness as introduced by Kripke and Leit-471

geb have been compared.472

15cf. section 2.4.2.
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It is shown that only when adding both a conditionality requirement and473

a consistency requirement at the same time to Leitgeb’s notion of depen-474

dence that the resulting set of grounded sentences becomes identical to those475

following from Cantini’s reformulation of Kripke’s notion of groundedness.476

An interesting question is what causes this equality. In particular, where477

exactly in Cantini’s formulation does one find the counterparts of condition-478

ality and consistency as used in the definition of dependency? For consistency479

the answer is not as clear as it seems, for although it appears overtly as a480

similar construction, it does not play the same role in Cantini’s formulation,481

for section 3.4 shows removing it there yields a more restrictive notion of482

groundedness than Leitgeb’s.483

Widening our horizon, does this convergence reasonable suggest that we484

have found “the one right” set of grounded sentences? This remains to485

be seen, for it is not unimaginable that a similar reasoning could adapt486

Cantini’s formulation to equal Leitgeb’s original notion of dependency. On487

the other hand, the fact mentioned above that similar concepts do not play488

the same role in both formalisms indicates that we are faced with a more489

intricate interplay of parameters that perhaps only in a few, or even one rare490

constellation provide coherent notion of groundedness.491

5.2 Future research492

5.2.1 Necessary groundedness493

As mentioned above, it would be interesting to see if the adaptations of494

Leitgeb’s notion of dependency can be inversely applied to Cantini’s so as to495

“lower” it to eventually equal Leitgeb’s original formulation.496

As part of this project such has also been attempted, taking the intersec-497

tion of the fixed points resulting from Cantini’s supervaluation based on any,498

not just the standard, interpretation of the arithmetical language. Formu-499

lated as such, it failed for exactly the same reason as conditional dependence500

failed,16 but in the future a better formulation might be found.501

5.2.2 Aboutness502

Furthermore, if indeed we are faced with a correct notion of groundedness, it503

is expected to be a special case of a general theory of “aboutness”[12][3][4][2],504

in which groundedness would be “about non–semantic states of affairs.” It505

would be interesting to see how precisely one obtains Leitgeb’s and Cantini’s506

formulation from such a theory.507

16That is, the existence of σλ as in section 3.3.2.
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