
Pheatures (working title)

Floris van Vugt

July 2, 2010

2

Overview

FeaturePad is a program for linguistics students to learn what features the
world’s sounds have. This is achieved through active practice. The program
never tells you the answer to a question, but it checks it for accuracy, and
often points out problems with the answer that need to be fixed.

For linguists, FeaturePad provides an interface to investigate properties
of the feature system and user–definable phoneme inventories.

This manual will explain how to use the interface. It will also provide
comprehensive instructions on how the advanced user can customise the fea-
ture system.

3

4

Contents

1 Using the interface 7
1.1 What things mean . 7

1.1.1 Features and feature matrices 7
1.1.2 Phoneme inventory . 8
1.1.3 Feature matching . 8

1.2 The main screen . 9
1.2.1 Get a phoneme inventory 9
1.2.2 Spreadsheet view . 9
1.2.3 Chart view . 9
1.2.4 Entering a phonological rule 10
1.2.5 Entering a feature matrix using the keyboard 11
1.2.6 Feedback messages . 11
1.2.7 Feature matrix labeling 12
1.2.8 Comparing features: some tools 12

1.3 The phoneme inventory editor 13
1.4 Natural class functions . 14

1.4.1 Listing natural classes 14
1.4.2 Finding feature specifications 15

2 Customizing the feature system 17
2.1 A few assumptions about the feature system 17

2.1.1 Diacritics . 18
2.1.2 Ordering diacritics for display 20

2.2 Input files and their syntax . 21
2.2.1 How to run the program in this extracted form? 21
2.2.2 Finding files and editing 22
2.2.3 Syntax of the particular files 23
2.2.4 Checking . 27

5

6 CONTENTS

2.3 Closing remarks . 28

3 Credits 29
3.1 People . 29
3.2 Materials . 30

Chapter 1

Using the interface

1.1 What things mean

It would be good to know what a few things are called in this manual and in
the program.

1.1.1 Features and feature matrices

For FeaturePad, a sound is really just a list of features and their values, such
as: [–consonantal, +syllabic, +low, –high]. Such a list is also often called a
feature matrix. Sometimes the word feature is used more specifically to refer
to a feature and its corresponding value in a feature matrix (e.g. one would
sometimes say that +low is a feature of the low vowel [a]).

Some of these feature matrices have a symbol as one would find in the
ipa alphabet. Examples of such symbols are [a], [@], [á], [S], [th] etc. The
latter symbol is interesting because it consists of a base symbol (t) and what
we call a diacritic (h). So in general we can say that any symbol consists of
one base symbol and zero or more diacritics added to it.

Base symbols have their associated feature matrices and every diacritic
that we add to them changes a number of features. For example, aspiration
(represented by the diacritic h) will change the sound’s feature “spread glot-
tis” to + and the feature “constricted glottis” to –. Another way of saying
this is that it causes the feature change [+spread gl, –constr gl].

7

8 CHAPTER 1. USING THE INTERFACE

1.1.2 Phoneme inventory

In FeaturePad we use a featuresystem that contains about two–hundred base
symbols, and eighteen diacritics. Since some diacritics put restrictions on
what sounds they attach to, not all possible combinations of base symbols
with any set of diacritics (200 × 218) can be made, but there are roughly
43, 000 symbols that can be created in this way.

Of course, no language uses all of them! That is why we can define a
phoneme inventory, which is really just a selection of all possible symbols.

1.1.3 Feature matching

Typically phonological rules apply on a subset of the phoneme inventory of
a language. For example, a language may have a fronting rule that causes
vowels to become [+front], but it does not apply to sounds that are not
vowels. In this case it is possible to say that the rule applies to sounds only
if they have the feature +syllabic. A technical way of saying the same thing
is that the sounds it applies to must be nondistinct from the feature matrix
[+syllabic], which is to say that for any two features they must have the same
value. A computer scientist would say that these sounds match that feature
matrix.

So if we have a phoneme inventory, then given any feature matrix we can
find the sounds that are nondistinct from it. For example, given the English
phoneme inventory and the feature matrix [–delayed release, –voice] we would
find that the sounds [p], [t] and [k] are nondistinct from it, and only they.
That is to say, [p,t,k] is a natural class and it is specified by the features [–
delayed release, –voice]. Notice that in other inventories one of these sounds
might be missing, or there may be more sounds that are [–delayed release,
–voice].

Then a phonological rule is defined by a feature matrix that tells us what
sounds it applies to (so it applies to some natural class) and another feature
matrix that tells us what features in those sounds the rule changes.

Now FeaturePad lets you define such a rule and see in real–time what it
does.

1.2. THE MAIN SCREEN 9

1.2 The main screen

1.2.1 Get a phoneme inventory

When you open the program, you will not see much yet. That is because
we need to start out by opening an inventory or creating a new one. If you
click the menu File and then select New phoneme inventory, you will go to
the inventory editor screen (see 1.3). if you select Open phoneme inventory

you can choose an inventory file that you have previously saved or that you
downloaded. In both cases you will see that the list in front of you now shows
the sounds in the inventory you selected.

There are two ways of viewing the inventory sounds, and you can switch
between them at any time. By clicking Spreadsheet, or Chart in the middle–
left of the screen.

1.2.2 Spreadsheet view

The spreadsheet view will serve to show you the features of each of the sounds
that you have selected. The sounds appear in a list and the columns represent
the values the sound has for each of the features.

You can restrict the features in this list by entering some feature–values
in the selection panel (see 1.2.4) and you will see that the list is updated to
contain only the sounds that have these features.

If you have entered a rule, i.e. if you have specified that you want some
features to change value, then this spreadsheet will show the sound features
after the change has applied. You will then also see that there are now two
symbols in the leftmost column, separated by a rightward pointing arrow.
This shows the original symbol and the symbol after the change. If any
could be found, that is (see 1.2.7), otherwise you will see a question mark.

1.2.3 Chart view

The chart view shows where the sounds in the inventory would end up in an
IPA chart. That is, the consonants are given on top and the vowels below.
The sounds of these two are then ordered roughly by place of articulation
(columns) and manner (rows).

As in the spreadsheet view, you can use the selection panel to restrict to
a particular natural class of sounds, but contrary to the spreadsheet view,

10 CHAPTER 1. USING THE INTERFACE

Figure 1.1: Entering a feature–matrix in the selection panel

the symbols that are distinct from your selection will not disappear but be
greyed out.

Again, if you have entered a rule, the symbol representing the changed
feature matrix will appear to the right of the arrow.

1.2.4 Entering a phonological rule

Now we will turn to how you can enter a number of feature–values to select
sounds. That is, how to enter the left hand side of a phonological rule.

The interface is shown in figure 1.11. Each row represents a feature–value.
You can enter the value in the left dropbox, and then the feature in the right
dropbox. If you click on them a list of options will appear. In addition to
this, you can click on the clear button to remove all your feature–value
settings, or keyboard to enter the feature–values using the keyboard (cf.
section 1.2.5).

Now we turn to entering the right hand side of a phonological rule. Spec-
ifying these feature–values that you want to change is done in a similar way
as you enter the selection.

As you are working with this interface, you will notice that the back-
ground of this table occasionally turns yellow or red. This is a signal that

1Notice that the precise appearance of the program may change according to your
operating system.

1.2. THE MAIN SCREEN 11

something is the matter with the features that you have selected, and this
will be discussed in section 1.2.6.

1.2.5 Entering a feature matrix using the keyboard

To enter a feature matrix using the keyboard, you can enter the values in
a single line in much the same way you would write them on paper. If you
click the button keyboard a small new window will appear that contains a
text field where you can enter the feature matrix.

You enter the feature–value settings separated by commas and for each
the value precedes the feature name. For example:

-consonantal, +high, +back

To save time, you could also have written -conson, +high, +back, since
in the standard feature system there is no other feature that starts with
conson. Notice that you could not have written cons to achieve the same
goal, since there is also a feature “constr gl” (constricted glottis).

Entering a natural class with the keyboard can be useful as a faster way
to input feature matrices for users that are well familiar with the feature
system. Also, you can use this function to quickly enter a rule that you
saved in your personal documents or papers by pasting them into the field.

1.2.6 Feedback messages

A third panel on the top right of the main screen is devoted to messages
pointing out issues with your feature selections. These messages are shown
in a list format and a single click on them will bring up a window that gives
more details about the message.

A typical kind of message is signalling redundancy. Let us give an exam-
ple. If you are selecting the low vowels in the inventory, and enter [+low,
–high] in the selection panel, a redundancy message will appear. This is be-
cause any vowel that is [+low] is automatically [–high]. So you could have
selected the same sounds by just choosing [+low]. Notice that the message
will not tell you which feature is redundant, since it is more instructive for
you to try out removing features and discover if any more sounds appear.

Another kind of message tells you about contradiction. This would hap-
pen for instance if you accidentally specified [+labial, –labial] as feature
changes. That is called an overt contradiction. But the program is also
on the lookout for implicit contradictions. These are contradictions that

12 CHAPTER 1. USING THE INTERFACE

arise out of what features mean in our feature system. For example [+front,
+back] is such an implicit contradiction, since obviously a sound cannot be
both pronounced both in the front and the back of the mouth (at least not
in our feature system — but it is up to you to customize the feature system
if you disagree, and this is explained in chapter 2).

1.2.7 Feature matrix labeling

When you implement a rule the program takes all sounds that match the
left–hand side of your rule and applies the given feature changes. The result
is a feature–matrix. Next, the program will attempt to find a corresponding
symbol. This is not as easy as it sounds. We not only have to compare
our feature matrix with those of the base symbols, but also detect if we can
arrive at our feature matrix by applying any set of diacritics. This is called
labelling or spelling a feature matrix.

Sometimes no label will be found. That is because there are many more
possible feature matrices than there are symbols. In our feature system with
28 features there are 328 different feature matrices, but only some 43, 000
possible spellings (and some of those are synonyms: symbols that have the
same feature matrix).

If this happens for any sound that you have created with a phonological
rule, you will see a yellow question mark after the rightward arrow, instead
of a symbol.

1.2.8 Comparing features: some tools

But this is where the fun begins. Using the spreadsheet, you will be able to
see what the features of this newly created sounds are. If you right–click on
it in either the spreadsheet or the chart, you can choose show neighbours.
This will make a new window appear that contains a list of all base symbols
and some combinations of diacritics that come close to spelling your newly
created feature matrix. The features that are different are highlighted, so
that you can see what additional feature changes you might need to make to
yield the symbol you wanted.

Furthermore you can access more functions when you select multiple
sounds. This can be done by holding down the control key on your key-
board and clicking on the different sounds in either the spreadsheet or the

1.3. THE PHONEME INVENTORY EDITOR 13

chart2.
Once you have selected various sounds in this way, you can right–click on

them3 to bring up a popup menu. In this menu you can select diff to show
only the feature differences of these two or more sounds. Similarly, common
will show the features that are the same for them.

These tools are designed to allow you full insight into how the feature
system works and gain familiarity with how sounds relate to each other.

1.3 The phoneme inventory editor

Sooner or later you will want to enter the phoneme inventory that corresponds
to the language that you are working on. If you click in the main screen on
the menu File and then New phoneme inventory this will bring up the
inventory editor starting with an empty inventory. If, from the main screen,
you click on Inventory and then Edit phoneme inventory, you will be able
to edit the phoneme inventory that you have currently loaded.

The phoneme inventory contains a big chart with all base symbols on the
left, and a smaller list with diacritics on the left. The base symbol chart will
appear in a chart that is similar to the way the IPA alphabet is usually laid
out.

To include a sound in your inventory, simply click on it once. You will
notice that it takes a blue colour, and this means you have succesfully added
it. Clicking on it again will remove it from the inventory, but leave a greyed
out cell in the table in case you’ll want to change your mind and add it later.

To add diacritics to the symbols, you can click on them and hold your
mouse button while you drag them to the left on to the base symbol you
want. This is called drag and drop, and again the precise implementation
may depend on your operating system.

You will see that often a new row will appear in the table below the base
symbol you selected and that the base symbol with its added diacritic appears
there. This is done to keep the organisation of the inventory editor intuitive.
You can add another diacritic to a symbol that has already a diacritic by

2Again, depending your platform, the key might be called differently. Consult your
familiar programs to see how multiple selections are handled there and it probably works
the same in FeaturePad. That is the convience of Java copying the guest operating system
“look and feel”.

3This may once more depend on your operating system.

14 CHAPTER 1. USING THE INTERFACE

dragging it onto the diacritic–marked symbol in the main chart.
In some cases, you will not be able to add a diacritic to a symbol. In this

case, it will light up red during the dragging and you will get an explanation
message. Some diacritics have requirements on what sounds they can attach
to. For example, the nasal diacritic (e.g. õ) can only attach to sounds that
are [+sonorant, –nasal]. To gain information on this, you can right–click on
the diacritic to bring up a screen with details.

Similarly, you can right–click on symbols in the chart to see how they are
composed of a base symbol and diacritics and what their features are.

Using the buttons in the bottom of the screen you can save your phoneme
inventory to a file or load one from a file4.

You can close the screen by pressing either Use inventory or Return

without using. If you want the phoneme inventory you have been working
on to appear in the main screen, you can click Use inventory. Otherwise,
click Return without using to abandon your changes.

Notice that even when you loaded an inventory from a file, you can safely
use the inventory editor to add a sound or two to it, and then click Use

inventory. The changes you made will not be saved to a file unless you
click Save to file in the inventory editor, yet you will be able to use the
updated inventory in the main screen.

1.4 Natural class functions

Now especially if you are a linguist already familiar with features, you might
find the following tools interesting to gain insight in the phoneme inventory
of your language.

These tools may be disabled in your copy of the program if you have a
pure pedagogical version, since they may make your homework too easy.

1.4.1 Listing natural classes

Given a language’s phoneme inventory, what sets of sounds form a natural
class? Some classes are obvious, such as the vowels, since they and only they
match [+syllabic]. But what other classes there are? In a typical feature
inventory, not just any arbitrary set of sounds will be a natural class.

4Note that these files are no longer compatible with the previous Windows implemen-
tation of FeaturePad.

1.4. NATURAL CLASS FUNCTIONS 15

By selecting the Inventory menu from the main screen and then List

natural classes, you will see a screen where you have to do is click Start

to have your machine generate a list of all possible natural classes. The set
of sounds is given on the left and the features that select precisely this class,
no more, no less, are given on the right.

You can double–click on any such class to automatically enter the fea-
tures in the selection panel, so that you can customize them and try further
combinations.

1.4.2 Finding feature specifications

Suppose you have a few sounds in your inventory in mind and you are curious
if they form a natural class, and if so, what feature matrix selects precisely
that class. Furthermore, quite possibly there are many different feature ma-
trices that all do just that. Here is how to get a list of these possible feature
matrices, which we will call feature specifications of the set of sounds.

You can select any sounds in the spreadsheet or chart (in the way de-
scribed in 1.2.8) and then right–click on them and choose Find featural

specifications. This will bring up a new window where pressing Start

launches the search for feature specifications of that set of sounds.
If any exist, that is, for quite possibly the set of sounds you have selected

simply isn’t definable by a feature matrix. That is, for any feature matrix
that you give there will either be a couple of other sounds that match it too,
or a couple of sounds that are in your set be excluded.

Finally, when the search is over the feature specifications that are not
minimal will be marked in yellow. A feature matrix is minimal if it succesfully
selects the group of sounds you gave, and if there is no other feature matrix
that does the same thing but with less feature–value pairs.

If you are only interested in these minimal feature specifications, you can
tick the checkbox that says to search only for minimal specifications. The
program will then find all minimal feature specifications, but not necessarily
all non–minimal feature specifications. However, it will be faster, since many
search branches can be trimmed as smaller and smaller feature specifications
are found.

16 CHAPTER 1. USING THE INTERFACE

Chapter 2

Customizing the feature system

The attractive thing about FeaturePad that may make it useful for estab-
lished linguists as well is that the feature system is entirely customizable.
That is to say, all the base symbols can be changed, their features changed,
and how they are laid out in the chart; diacritics can be added or removed;
one can even add or remove features altogether; and one can edit what con-
tradictions are.

The only caveat is that there is no user interface for editing the feature
system. That means it will be slightly technical. However, it does not re-
quire programming knowledge, nor sophisticated programs beyond a simple
spreadsheet editor such as Microsoft Excel or OpenOffice Spreadsheet.

2.1 A few assumptions about the feature sys-

tem

First I will discuss briefly how the feature system works, so that the reader
will understand what to do in order to customize the desired parts.

The feature system is defined by:

• Base Symbols — the base symbols as they have been introduced in
1.1.1. They have a label that is used for displaying them (e.g. [a] or
[î]) and a number of feature–settings, that is, a feature matrix. This
is stored in the file basefeatures.txt, whose syntax will be discussed
in 2.2.3. It is important to note also that the features that occur in
basefeatures.txt will be taken as an exhaustive list of all features in

17

18 CHAPTER 2. CUSTOMIZING THE FEATURE SYSTEM

the feature system. That is, you cannot make mention in another file
of a feature that does not also occur in the base symbol list.

• Diacritics — which have been discussed before. They have a label and
a feature matrix with requirements and one with the feature changes
they effect. They are defined in the file diacritics.rules (see 2.2.3).
Some more clarifications on how diacritics are used are presented in
2.1.1.

• Dependencies — Dependencies are used in the interface. When cer-
tain feature changes are made, other feature changes follow–up au-
tomatically. For example, when the user changes sounds to [+high],
they are automatically changed to [–low]. Dependencies are defined in
dependencies.rules (see (2)).

• Contradictions — Certain feature combinations are contradictory,
such as [+front, +back], and we want to warn the user about them.
These contradictions are defined in contradictions.rules (see (4)).

• Chart definition — Finally we want to present all possible sounds in a
chart that is similar to the way the IPA alphabet is typically presented.
This is defined and can be customized in three files, ipachart-consonants.txt,
ipachart-other.txt and ipachart-vowels.txt, and they will be dis-
cussed in (5).

2.1.1 Diacritics

In section 1.1.1 it has been explained that a diacritic is attached to a base
symbol and effects some feature changes to that symbol. Diacritics may pose
requirements on what sounds they can attach to, in the form of a feature
matrix that the sound must match.

A few observations about how FeaturePad views diacritic attachment.

Feeding and bleeding and multiple diacritics

Let us take the example of creating a voiceless aspirated nasal [m
˚

h]. We
find in the diacritic list that the voiceless diacritic requires the sound it
attaches to be [+sonorant, +voice], from which [m] is nondistinct. So, using
the inventory editor, we can drag the diacritic on to the base symbol [m]

2.1. A FEW ASSUMPTIONS ABOUT THE FEATURE SYSTEM 19

to create [m
˚

]. Now the aspiration diacritic requires [+consonantal, –voice,
–spread gl, –constr gl], which matches [m

˚
], and therefore we can add it and

create the desired [m
˚

h].
What would have happened if we had added them the other way around?

We would run into a problem when trying to add the aspiration diacritic to
[m], because that diacritic requires the sound to be [–voice], among other
things, and [m] is [+voice]. One can say that the voiceless diacritic has fed
into the application of the aspirated diacritic.

Similarly, the voiceless diacritic bleeds application of other diacritics, such
as the breathy–voiced diacritic, since that one can only attach to [+voice]
sounds.

To summarise:

• Diacritics pose requirements on the compound sound they attach to,
not on the base symbol. Therefore we get feeding and bleeding in
diacritic attachment.

Transparency assumption in diacritic attachment

FeaturePad makes an additional assumption about diacritic attachment, which
is as follows:

• Every diacritic that is attached must be attached transparently, i.e. it
cannot change the value for features that previously attached diacritics
set.

Let me give an example, which will be artificial precisely because our as-
sumption is that any sensible diacritic system has this transparency property
anyway.

Suppose that we are in a simple feature system with three features: a,
b and c. Suppose that we have the base symbol B=[+a, –b, –c]. We have
a diacritic x that applies to –a sounds and changes them into [+b, +c], so
we cannot form Bx (i.e. applying diacritic x to B). But let’s assume that
there is also a diacritic y that applies to [–b] sounds and turns them into
[–a]. Then we can form By, which will have features [–a, –b, –c]. Let us also
assume that there is a diacritic z that applies to [–a] sounds and turns them
into [+a]. Can we then add diacritic x to By, to form Byx? Yes: By meets
x’s requirement [–a] (so y has fed into x’s application).

But can we then add diacritic z to Byx to create the symbol Byxz? No,
because this violates the transparency condition. The point is that z changes

20 CHAPTER 2. CUSTOMIZING THE FEATURE SYSTEM

the value [–a] (that was set by the diacritic x) to [+a], thus as it is “overriding”
another diacritic. That is what the transparency condition prohibits.

Another way of putting the transparency condition:

• Given a symbol, the union of all the feature changes of the diacritics
cannot contain a contradiction.

In our example: the union of the feature changes of the diacritics in Byxz
would be [–a, +b, +c, +a] which contains a contradiction.

This has a useful consequence:

• A diacritic can only be applied once meaningfully to a symbol.

The point is that given the transparency condition, we know that the
second application of the diacritic would not effect any feature changes.

This means that even though we allow feeding and bleeding in our dia-
critic system, the diacritics that are applied to a symbol are essentially a set:
if there is one ordering of application that is legal, i.e. that has the correct
feeding and bleeding relations among them, then any other ordering that is
legal as well will create the exact same feature matrix.

What will go wrong if we violate this transparency constraint? The sim-
ple answer is: nothing. You will be allowed to create such symbols in the
phoneme inventory editor. The complicated answer is: the labeling algorithm
(1.2.7) will not find that label when it requires it to try out non–transparent
diacritic applications.

Notice finally that this transparency condition counts only for diacritics.
We do not wish to say anything about whether our phonological rules can
be opaque or not!

2.1.2 Ordering diacritics for display

Since we have now established that the diacritics that apply to a symbol can
be seen as a set, we can address the next issue. Technically, the diacritic
labels should be added in a particular order so that the unicode symbol will
display correctly. That is, we must first add the non–spacing characters
(i.e. characters that merely attach above or below the base symbol such
as the voiceless diacritic), and only afterwards the spacing characters (such
as the aspiration diacritic). If we would do it the other way around, the
voiceless diacritic would not appear straight underneath the base symbol

2.2. INPUT FILES AND THEIR SYNTAX 21

but be displaced to the right, since it takes into account the space taken up
by the aspiration h.

How is this ordering of attachment defined? FeaturePad quite simply reg-
isters the order in which you give the diacritics in the file diacritics.rules
(see 2.2.3), and for any symbol, it will attach the diacritic labels in that
order. For example, the voiceless diacritic will appear earlier in the file
diacritics.rules and that will cause it to always be applied before the
aspiration.

Notice also that this ordering of application of diacritic labels is indepen-
dent of the application of their feature changes! This is important.

2.2 Input files and their syntax

Now that we have covered the fundamentals of our feature system, we are
ready to look into how to customize them by editing the files. Standard,
FeaturePad might have come to you in a compressed archive, called jar.
This is a standard archive method for Java programs and its convenience is
that it yields a single file that contains all program requirements as well as
data files.

In order to edit the feature system you will first have to extract this
archive. Any archive program should be able to extract them. Extract them
in a folder and make sure it recreates the folder structure present in the jar
archive.

Then, after extraction you will notice a number of program files (which
end in .class) and a number of folders. All files configuring the feature
system are found in the folder data/.

2.2.1 How to run the program in this extracted form?

You will need to invoke the main class, which is Pheatures.class, which is
located in the root folder of the jar archive. You can often do this by double–
clicking or invoking java -jar Pheatures from the command–line. Check
the documentation of your Java Runtime Environment for your operating
system.

If you want to put the files back in archive form after you edited them,
you can simply compress the folder you previously extracted back into a jar

22 CHAPTER 2. CUSTOMIZING THE FEATURE SYSTEM

archive, which you can then run and send in the same way as the original
FeaturePad package you downloaded.

2.2.2 Finding files and editing

In data/, you will find two types of files that require slightly different ways
of editing: files that end in .txt and files that end in .rules, and these will
be discussed in the following sections.

Whenever you edit these files, make sure that your editor supports Uni-
code, since all of the symbol characters as well as diacritics in FeaturePad
are entirely Unicode–based.

What are tab–separated files (.txt)?

The .txt files that are used by FeaturePad are not ordinary text files. They
are tables, and they are saved in a tab–separated format since this was thought
to be compatible with the largest number of existing spreadsheet editors1.

In these files, the rows of the table are the lines in the file, and the columns
in each row are separated by a tab (whitespace) character. Contrary to usual
csv files, the values are not enclosed by quotes ("like this") but stored
plain (like this).

You can open and edit these tab–separated files in a text editor (such as
Windows Notepad or GNU Emacs), but it is far more convenient to open
them in a spreadsheet program such as Microsoft Excel or GNU Numeric.

Upon opening, you might be asked for a field separator. Make sure your
enter only tab as a field separator and not comma or semi–colon (;) as well as
that might have unexpected results. Furthermore what is often called “field
encloser” should be absent, as no quotes surround the cells.

Finally, make sure that you do not select to merge delimiters! In some
applications, multiple delimiters are considered as one. But for our purpose,
when multiple tabs occur that reflects that the cells they separate are empty.
To ensure correct horizontal line–up, we should therefore not merging delim-
iters when reading or writing these tab–separated files.

Obviously, these same settings should be used when saving the files.

1Some spreadsheet editors are able to read these files in their csv–mode (Comma–
Separated Values), where for these programs the “comma” is really a “tab”.

2.2. INPUT FILES AND THEIR SYNTAX 23

What are rule files (.rules)?

The .rules files are not tables. They are essentially a list, the exact contents
of which vary, and they will be discussed when we discuss each of the files.
You can open, edit and save these files from your favourite plain text editor
such as Windows Notepad or GEdit. Make sure you do not use a word
processor as that may have unexpected results.

2.2.3 Syntax of the particular files

basefeatures.txt

This file defines the base symbols and their features. The first row is a header,
giving the names of the features.

As explained before, this is taken to define an exhaustive list of all feature
names. You cannot mention a feature elsewhere that does not appear as a
column in this base symbol table. Furthermore, the order of the columns
in this file defines the order of the features in the drop–down lists in the
selection panel of the main user interface.

The feature names, by the way, can contain spaces or other characters, as
long as they do not contain tabs (since this will cause confusing when these
files are parsed by FeaturePad).

Starting from the next row are the base symbols. The first column gives
the (Unicode) label of the symbol. The second column contains a reference
to a sound file (which may or may not be actually implemented in the version
you are using — if you are not sure what to do, leave it empty).

Then from the third column onwards you can enter the values for the
feature that that column represents. Possible values are plus (+), min (-)2

or null (0)3. Do not leave the field empty but write 0 instead. Null has to
be explicitly coded for parsing purposes and it will be clearer for you when
you edit the file.

2Notice that there are multiple Unicode characters corresponding to - (longer and
shorter dashes). To avoid errors, it is safest to copy a minus from another cell into where
you want it, though in most cases the minus from your keyboard should be the right one.

3That is, the number 0. Not the letter o, nor uppercase O. Again, if you are confused,
simply copy some of the zeros from another row.

24 CHAPTER 2. CUSTOMIZING THE FEATURE SYSTEM

diacritics.rules

In this file each row defines a diacritic. The format is as follows, where the
parentheses are not part of the format, but the semicolons (;) and arrows
(>) are:

(1) (description) ; (label) ; (requirements) > (changes)

The items represent:

• (description) This is a (short) name that represents the diacritic. It
must be unique, i.e. there cannot be two diacritics with the same
description.

• (label) This is the actual symbol that should be pasted onto the base
symbol when we apply the diacritic. This label can be given in one of
two ways. Either it is just literally a Unicode symbol, or, alternatively,
its numeric character code. The reason for this alternative is that it
may not be straight–forward to enter a diacritic label in your text
editor without a base symbol to which it can attach. Therefore it may
be easier to enter the numeric character code, which can be found in
any Unicode chart4.

• (requirements) This is a feature matrix (without enclosing square brack-
ets) that defines what features the sound must have to which this dia-
critic attaches.

• (changes) Again a feature matrix, representing what feature changes
this diacritic effects.

An example is the following line. Notice that any whitespace in between
the items is removed during parsing. This leaves you the freedom to vertically
align the items so that they are maximally readable for you. Note also that
we have here used the numeric value (805) of the voiceless diacritic, rather
than write it as a Unicode character.

(2) voiceless; 805; +sonorant, +voice > -voice

Remark also that the order in which you give the diacritics in this file, is the
order in which the labels are applied to a base symbol (see 2.1.2).

4For an excellent resource, see http://www.phon.ucl.ac.uk/home/wells/ipa-
unicode.htm

2.2. INPUT FILES AND THEIR SYNTAX 25

dependencies.rules

Dependencies are changes that are applied automatically when the user se-
lects to change certain features. Again, each line represents one such depen-
dency. The format is as follows:

(3) (conditional) > (changes)

• (conditional) A feature matrix (without enclosing square brackets) rep-
resenting the features that, when they are changed, initiate this depen-
dency.

• (changes) A feature matrix representing the feature changes that occur
automatically when those in the conditional are changed.

An example is the following, which expresses that when a sound becomes
consonantal, it cannot have a tense value anymore. When the user makes
this change in the interface, a grey message will appear that this change has
been filled in.

(4) +consonantal > 0tense

contradictions.rules

This file is one of the simplest: each line represents a single feature ma-
trix specifying a contradictory combination of features (without surrounding
square brackets). For example:

(5) +consonantal, +tense

This line specifies that for a sound to be both +consonantal and +tense is
contradictory. In the interface it would appear marked in red. When the user
attempts to write a rule that changes a sound to [+consonantal, +tense] a
red warning message will appear.

ipachart-*.txt

Perhaps the most tricky files to edit are those that define the IPA–like chart.
They are used by the program to lay out the base symbols in the inventory
editor, as well as in the Chart view in the main screen. It is crucial to edit

26 CHAPTER 2. CUSTOMIZING THE FEATURE SYSTEM

this file if you add or remove base symbols, since all base symbols must be
present in this chart, and any symbol that appears must be a base symbol.

You can open the ipachart-X.txt in your spreadsheet editor (where X

is either consonants, other or vowels). Each cell is one of the following:

• Empty. When you leave no character in the cell, it will be treated as
empty in the chart5.

• A label. You can enter text that will appear in the phoneme inventory
editor to clarify what each row or column represents; or you could write
the comments in the middle of the table if you so prefer. Simply enter
your text surrounded by square brackets ([like this]). Any spaces
you write in this label will be converted into line breaks when the cell
is displayed. Try it out. This will make it easier to fit all the text you
want in the relatively small cells. If you do not want such a line break,
simply remove the space or substitute it by a dash ([like-this]) will
be easily readable as well.

Notice that labels are not shown in the Chart view in the main screen.
This is thought to be too confusing. They are only shown in the
phoneme inventory editor.

• A symbol. That is, a base symbol, or a base symbol with some dia-
critics added. For one, all base symbols should have a place in one of
the three charts (that is, in the consonant, vowel or other chart). If the
program encounters a base symbol that does not have a place in either
of these charts it will give an error message on the command–line. You
should fix this before you continue to use the program, otherwise unex-
pected things will happen. For example, the symbol will not be shown
in the Chart view.

In addition to the base symbols you may add some base symbols with
added diacrtiics. This will make them easier available to the user when
they build the phoneme inventory, because then he or she does not have
to drag it onto the base symbol him– or herself.

What is the format for entering a symbol? If you want to add a bare
symbol, you simply write its label as it appears in basefeatures.txt.

5As mentioned earlier, make sure that your spreadsheet editor does not merge adjacent
delimiters, since then it will “delete” empty cells when it saves and shift all following cells
leftward, causing misalignment.

2.2. INPUT FILES AND THEIR SYNTAX 27

Make sure you write it in exactly the same way! Unicode symbols that
consist of multiple parts can often be written in more than one way, by
adding the parts in different orders. It is crucial that it appears in the
chart as it does in basefeatures.txt or else it will not be recognised.
Again, to be sure, you are advised to copy and paste the symbols from
basefeatures.txt.

How to write a symbol with diacritics? You write the base symbol as
above, followed by a semi–colon (;) and then write the names of the
diacritics separated by semicolons. So do not write the diacritic labels
here, nor paste the diacritics onto the base symbol yourself! This is
again for parsing reasons and readability, as well as to avoid confusion.
So for example our famous voiceless aspirated nasal [m

˚
h] will be written

as m;voiceless;aspirated6.

2.2.4 Checking

How do you know if your changes do not cause internal errors in the feature
system? FeaturePad performs some checking when it starts up. For example,
it will check whether it recognised any symbol that you entered into the
ipachart-X.txt files. Also, if there is some base symbol that is not there,
it will send a warning.

These warnings are written to the standard (error) output. If you run
the program in Windows and execute it by double–clicking on it, you will
not see these messages. Rather, you need to execute the program from the
command–line. Similarly, in Mac OS, you can go to the Console (typically
found somewhere in Applications or Utilities).

Make sure you keep an eye on such messages and also keep a copy of any
files you are editing so that you can revert whenever you make a crucial or
mysterious mistake.

6Since, as we explained before, diacritics are essentially a set, you could also write
m;aspirated;voiceless to get the same result. The order of the diacritics does not
reflect the order of attachment. In fact, you should be careful not to write diacritics that
cannot in any order attach to the base symbol! The program does not check this for you.

28 CHAPTER 2. CUSTOMIZING THE FEATURE SYSTEM

2.3 Closing remarks

With this customizability, it is hoped that linguists can experiment with
their own feature systems and investigate how the phonological rules that
they propose would work in detail and check them for doing exactly what we
want them to do.

It is finally hoped that the program will make learning phonology fun and
take out the frustrating aspects of never knowing what exact features sounds
are supposed to have.

Chapter 3

Credits

3.1 People

FeaturePad was funded by two grants from UCLA’s Office of Instructional
Development to Bruce Hayes. See their website1 for more information.

The idea for this program originates with Bruce Hayes2, who is a professor
at the Linguistics Department of the University of California, Los Angeles.
He also designed the feature system that comes standard with FeaturePad.

A first implementation in Windows of this idea was made by Kie Zuraw3,
who is also a professor at the UCLA Linguistics Department. She also de-
signed much of the precise implementation of the feature system. The current
version of FeaturePad shamelessly copies many of her elegant algorithms.

The current Java–based implementation is designed and programmed by
Floris van Vugt4, a graduate student of linguistics at UCLA. Some additional
functionality such as Diff, Common and the natural class functions have been
designed (in collaboration with Bruce Hayes) and written by Floris.

1http://www.oid.ucla.edu/
2http://www.linguistics.ucla.edu/people/hayes/
3http://www.linguistics.ucla.edu/people/zuraw/
4http://florisvanvugt.free.fr/

29

30 CHAPTER 3. CREDITS

3.2 Materials

The program uses the Doulos SIL Unicode–based IPA font, which is made
available online5 by SIL.

The program is compiled using Sun’s Java Development Kit, version 1.6.
It requires JRE 1.5 or higher to run. I recommend using Sun Java JRE,
although other implementations have been tested as well. Mac OS X’s java
implementation has issues with the drag and drop interface, which may make
the Inventory Editor unusable. Other than this the program should work fine
on all platforms.

5http://www.sil.org/

	Using the interface
	What things mean
	Features and feature matrices
	Phoneme inventory
	Feature matching

	The main screen
	Get a phoneme inventory
	Spreadsheet view
	Chart view
	Entering a phonological rule
	Entering a feature matrix using the keyboard
	Feedback messages
	Feature matrix labeling
	Comparing features: some tools

	The phoneme inventory editor
	Natural class functions
	Listing natural classes
	Finding feature specifications

	Customizing the feature system
	A few assumptions about the feature system
	Diacritics
	Ordering diacritics for display

	Input files and their syntax
	How to run the program in this extracted form?
	Finding files and editing
	Syntax of the particular files
	Checking

	Closing remarks

	Credits
	People
	Materials

