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Abstract

This paper will provide the explicit proofs of the independence
from ACA0 of four propositions that were set out by Smith[2]. The
propositions express the fact that particular subsets of the set of all
trees T are well–quasi–orderings. To prove the independence, the
approach of this paper is to proceed from the assumption that ACA0 0
CWF(ε0)[3] via the explicit formulation of a function ψ : ε0 → A,
where T ⊃ A is the set of trees under consideration, and ψ(α) E
ψ(β) ⇒ α ≤ β — where E denotes homeomorphic embedding, which
is specified to be, depending on the proposition, structure preserving
or not.

1 Introduction

We will take (A,≤) is a well–quasi ordering if (A,≤) is a quasi–ordering
(that is, it is reflexive and transitive) and the proposition WQ(A) is true,
where WQ(A) ≡ ∀F : N → A,∃i, j(i < j ∧ F (i) ≤ F (j)).

The following four well–quasi orderings are under consideration:

1. B is the set of all binary trees, where B 3 t1 E t2 ∈ B iff there is a
homeomorphic (infimum–preserving) embedding of t1 into t2.
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2. B is the set of all binary structured trees, where B 3 t1 E t2 ∈ B iff
there is a homeomorphic structure–preserving embedding of t1 into t2.

3. B2 is the set of all exactly binary trees, where B2 3 t1 E t2 ∈ B2 iff
there is a homeomorphic embedding.

4. For each n, Qn is the set of trees of height n. Again, Qn 3 t1 E t2 ∈ Qn

iff there is a homeomorphic embedding.

In the first three cases, one is concerned with a well–quasi ordering (A,E),
but it is not possible in ACA0 and PA to prove this fact. The argument
towards this will proceed from the assumption that[3]

ACA0 0 CWF(ε0) (1)

Here CWF(A) ≡ ∀k∃n∀(α0, . . . , αn)(∀i ≤ n(|ti| ≤ k + i ⇒ ∃i < j(αi ≤
αj))).

Taking any function F : N → A and considering the set of n–tuples
(F (0), . . . , F (n)) it is clear — and will be used in the argument — that the
following proposition is implied:

ACA0 0 ∀F : N → ε0,∃i, j(i < j ∧ F (i) ≤ F (j)) (2)

One will show that, for each of the first three propositions there exists an
order–preserving function ψ : ε0 → A. From this fact it follows that ACA0 `
WQ(A) would imply that ACA0 ` CWF(ε0), contrary to the established
result.

In the fourth case, what is to be proven is that ACA0 0 ∀nWQ(Qn). The
argument proceeds similarly. It is shown that if ACA0 ` ∀nWQ(Qn) then
ACA0 ` CWF(ε0) and thus the former cannot hold.

The proofs will not be given in the original order.

2 Preliminaries

Definition 2.1. ω0=̇ω
0 ωs(n)=̇ω

ωn .

Definition 2.2. ε0=̇ min{ξ ∈ On|ξ = ωξ}.

Definition 2.3. Im=̇{n ∈ N|n ≤ m}. Clearly |Im| = m+ 1.
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Definition 2.4. For any function f and any sets A and B such that f : A→
B, the notation f [A] is taken to refer to the set {x ∈ B|∃a ∈ A(f(a) = x)}.
Definition 2.5.

A0 =̇ {∅}
A1 =̇ A

∀n > 1 An =̇ A× An−1

Lemma 2.1. The following facts about ordinals are used[1], for all α, β, γ, δ:

• α ≥ β ∧ γ ≥ δ ⇒ α+ γ ≥ β + δ.

• For β 6= 0, α ≤ βα.

• α > β ⇒ α+ γ > β.

• For γ ≥ 0, α ≤ β ⇒ γα ≤ γβ.

• α ≤ β ⇒ α ≤ ω0 · β.

Cantor Normal Form (in base ω) Furthermore, it is assumed to be known
that for each α < ε0, it holds that either α = 0 or ∃!α0 ≥ . . . ≥ αn(α =
ωα0 + . . .+ ωαn).

Lemma 2.2. The following holds for the Normal Form expansion of α > 0,
where the coefficients in base ω are denoted by αi,

1. α0 < α.

2. If α ∈ ωn then α0, . . . , αm ∈ ωn−1.

Proof. 1. 0 < α0 < ε0 and thus ωα0 > α0. If not α0 < α then ωα0 > α0 ≥
α, absurd.

2. If for any i ≤ m, αi > ωn−1 then α ≥ ωαi > ωωn−1 = ωn, contrary to
the assumption.

Also, a#b will be taken to denote the natural (Hessenberg) sum. It has
the property that if a0 ≥ . . . ≥ an > 0 and ∀i∀δ, γ < ai(δ + γ < ai), then
a0 + . . . + an = a0# . . .#an[1]. In particular, this holds for Cantor Normal
Form expansions in the basis of ω.

Furthermore, if α < ωn then α0, . . . , αm ∈ ωn−1.
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3 Trees

Definition 3.1. Let T denote the set of all trees. Let 0 be used to refer to the
trivial tree consisting only in a root. Let there be for each n ∈ N an injective
function •n : T n+1 → T such that for t0, . . . , tn ∈ T , the tree consisting of a
root whose successors are t0, . . . , tn is referred to by •n(t0, . . . , tn). The set
of all trees T is defined as the smallest set T such that

0 ∈ T
∀n ∈ N t0, . . . , tn ∈ T ⇒ •n(t0, . . . , tn) ∈ T

In the following there will be dealt with subsets of T .

4 Proposition ii

Let B ⊂ T be the set of all binary structured trees, 0 ∈ B the trivial tree
consisting only of a root and • : B × B → B, injective, where •(a, b) yields
the tree that has as the two branches of the root the trees a and b.

We assume that ∀a, b(0 6= •(a, b)).
We define the following relation on the set B to represent direct embed-

dability.

Definition 4.1. E− is the smallest possible relation such that:

∀t ∈ B2 0 E− t

∀s1, s2, t1, t2 ∈ B2 •(s1, s2) E− •(t1, t2) ⇔ (•(s1, s2) E− t1) ∨
(•(s1, s2) E− t2) ∨
(s1 E− t1 ∧ s2 E− t2)

Lemma 4.1. ∀a(a E− a)

Proof. By induction.

• Basis a = 0. Follows by definition.

• Inductive a = •(n1, n2). ni = ni, i ∈ {1, 2}, thus by the inductive
hypothesis, ni E ni. Thus, by definition of E−, a E− a.
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Definition 4.2. E is the transitive closure of E−, which means that it holds
that a E b⇔ ∃n∃a0, a1, . . . , an(a = a0 E− a1 E− . . . E− an = b).

Obviously, E is a quasi–ordering.

Lemma 4.2. Let (A,E) be the transitive closure of (A,E−). Let ∀a(a E−

0 ⇒ a = 0). Then ∀a(a E 0 ⇒ a = 0).

Proof. t E 0
def⇔ ∃n∃a0, . . . , an.t = a0 E− . . . E− an = 0. Proof by induction

on n.

• Basis n = 0 is trivial, since the right hand side above shows t = 0. For
n = 1: t E− 0. Thus t = 0.

• Inductive n > 0: ∃a0, . . . , an−1, an(t = a0 E− . . . E− an−1 E− an =
0. From an−1 E− 0 follows that an−1 = 0, as before. Then, by the
inductive hypothesis, t = a0 = 0.

Corollary 4.3. 0 is a minimal element of (B,E).

Proof. The assumption is obvious from the fact that E− is the minimal re-
lation for which the conditions mentioned above hold.

I then define the set T{φ,0} as the smallest set of terms, such that

0 ∈ T{φ,0} (3)

a, b ∈ T{φ,0} ⇒ φ(a, b) ∈ T{φ,0} (4)

Every term has an ordinal as its interpretation. The interpretation of
0 ∈ T{φ,0} is 0 ∈ On, and the interpretation of φ(α, β) is ωα + β.

By Cantor’s Normal Form,

∀α 6= 0, α < ε0(∃!α1 ≥ . . . ≥ αn(α = ωα1 + (. . .+ ωαn))) (5)

One writes α =N (β, γ) if α 6= 0 and, the Cantor Normal Form expansion
of α in the basis of ω being α = ωα0 + . . .+ ωαn , β = α0 and γ =

∑n
i=1 ω

αi .
We define a function φ : On×On → On as φ(α, β) = ωα + β.

Lemma 4.4. For each 0 < α < ε0 there exist unique β and γ such that
α =N (β, γ). Also, α = φ(β, γ) and β < α and γ < α.
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Proof. The existence and uniqueness is obvious from the Cantor Normal
Form. The equation α = φ(β, γ) arises from the definition of φ. After lemma
2.2 β < α. For the last fact, if γ > α then, by lemma 2.1, ωβ + γ > α,
absurd. If γ = α, then, since γ > 0, there exist γ0 ≥ . . . ≥ γn such that
γ = ωγ0 + . . . + ωγn . Then α = ωβ + ωγ0 + . . . + ωγn = γ = ωγ0 + . . . + ωγn ,
which contradicts the uniqueness of the Cantor Normal Form.

Corollary 4.5. For each α < ε0 there is a term tα ∈ T{φ,0} such that the
ordinal that is its interpretation is α.

Proof. By induction on α. If α = 0, then tα = 0 and its interpretation is
by definition 0. If α > 0, then by lemma 4.4, there exist unique β, γ such
that α =N (β, γ), and β, γ < α. By the inductive hypothesis, it can thus
be assumed that there exist tβ and tγ whose interpretations are β and γ,
respectively. Then tα = φ(tβ, tγ) and its interpretation is α.

Lemma 4.6. For any α, β < ε0, if α =N (α1, α2) and β =N (β1, β2), then

1. α ≤ β1 ⇒ α ≤ φ(β1, β2)

2. α ≤ β2 ⇒ α ≤ φ(β1, β2)

3. α1 ≤ β1 ∧ α2 ≤ β2 ⇒ φ(α1, α2) ≤ φ(β1, β2).

Proof. Due to lemma 4.4, α = φ(α1, α2) and β = φ(β1, β2).

1. α ≤ β1. Thus α ≤ ωβ1 ≤ ωβ1 + β2 = φ(β1, β2).

2. α ≤ β2 ≤ ωβ1 + β2 ≤ β.

3. α1 ≤ β1 and thus ωα1 ≤ ωβ1 . Then, by lemma 2.1 φ(α1, α2) ≤ φ(β1, β2).

Definition 4.3. One defines a function ψ : ε0 → B as follows, and will then
show that the property ψ(α) E ψ(β) ⇒ α ≤ β holds. For each α ∈ ε0, one
finds the term tα ∈ T{φ,0} and associates with it a tree inductively:

ψ(0)
.
= 0

ψ(φ(a, b))
.
= •(ψ(a), ψ(b)) (6)

Lemma 4.7. ∀α(ψ(α) = 0 ⇔ α = 0)
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Proof. ⇐: By definition of ψ.
⇒: If α 6= 0, then α = φ(α1, α2), and ψ(α) = •(ψ(α1), ψ(α2))) 6= 0.

Lemma 4.8. ψ(α) = ψ(β) ⇒ α = β (ψ is injective)

Proof. Proof by induction on the complexity of ψ(α) ∈ T{φ,0}.

• Basis ψ(α) = ψ(β) = 0. By lemma 4.7, 0 = α = β.

• Inductive ψ(α) 6= 0. By lemma 4.7, α 6= 0 6= β. Thus α = φ(α1, α2)
and β = φ(β1, β2). Then •(ψ(α1), ψ(α2)) = •(ψ(β1), ψ(β2)). By the
injectivity of the function • we find that ψ(α1) = ψ(β1) and ψ(α2) =
ψ(β2), and as a result of the inductive hypothesis α1 = β1 and α2 = β2,
whence α = β.

Lemma 4.9. t E− ψ(β) ⇒ ∃α(ψ(α) = t)

Proof. By induction on the complexity of ψ(β).

• Basis ψ(β) = 0. By lemma 4.7 t = 0. By the definition of ψ, ψ(0) = 0
and thus ∃α(ψ(α) = t).

• Inductive ψ(β) 6= 0. If t = 0 then ψ(0) = t. Let us assume t 6= 0,
which implies t = •(t1, t2). Then by lemma 4.7 β 6= 0. Thus β =
φ(β1, β2). Then ψ(β) = •(ψ(β1), ψ(β2)). By definition of E− one of the
following must hold:

– t E− ψ(β1). Then by the inductive hypothesis, ∃α(t = ψ(α)).

– t E− ψ(β2). As above, ∃α(t = ψ(α)).

– t1 E− ψ(β1) and t2 E− ψ(β2). By the inductive hypothesis, for
i = 1, 2, ∃αi(ti = φ(αi)). Then ψ(φ(α1, α2)) = •(ψ(α1), ψ(α2)) =
•(t1, t2) = t and thus ∃α(t = ψ(α)).

Lemma 4.10. ψ(α) E− ψ(β) ⇒ α ≤ β

Proof. By induction on the complexity of ψ(β):

• ψ(β) = 0. Then, by lemma 4.3 ψ(α) = 0. By lemma 4.7 α = β = 0.
Thus in particular α ≤ β.
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• ψ(β) 6= 0. Induction on the complexity of ψ(α):

– ψ(α) = 0. Then, by lemma 4.7 α = 0 and thus for all β, 0 = α ≤
β.

– ψ(α) 6= 0. Again, by lemma 4.7, α 6= 0, β 6= 0. By the Cantor
Normal Form, ∃α1, α2(α = φ(α1, α2) and ∃β1, β2(β = φ(β1, β2).
Then ψ(α) = •(ψ(α1), ψ(α2)) and ψ(β) = •(ψ(β1), ψ(β2)).

Then the premise is equivalent to •(α1, α2) E− •(β1, β2).

By the definition of E−, this implies that one of the following
holds:

∗ ψ(α) = •(ψ(α1), ψ(α2)) E− ψ(β1). By the inductive hypoth-
esis α ≤ β1. By lemma 4.6, α ≤ β.

∗ ψ(α) = •(ψ(α1), ψ(α2)) E− ψ(β2). By the inductive hypoth-
esis α ≤ β2. By lemma 4.6, α ≤ β.

∗ ψ(α1) E− ψ(β1) and ψ(α2) E− ψ(β2). By the inductive
hypothesis α1 ≤ β1 and α2 ≤ β2. Then by lemma 4.6,
φ(α1, α2) ≤ φ(β1, β2), and thus α ≤ β.

Lemma 4.11. Let (A,E) be the transitive closure of a quasi–ordering (A,E−

). Let ψ : X → A, where (X,≤) forms a transitive relation, such that
∀α, β(ψ(α) E− ψ(β) ⇒ α ≤ β) and ∀a(a E− ψ(β) ⇒ ∃α(ψ(α) = a)). Then
∀α, β(ψ(α) E ψ(β) ⇒ α ≤ β.

Proof. Let us assume that ψ(α) E ψ(β).
This means that ∃n∃a0, . . . , an(ψ(α) = a0 E− . . . E− an = ψ(β). Proof

by induction.

• Basis n = 0. ψ(α) = ψ(β). Since (A,E−) is a quasi–ordering, it
follows that ψ(α) E− ψ(β), and thus by assumption α ≤ β. For n = 1
the premise is already ψ(α) E− ψ(β).

• Inductive n > 1. Thus ∃n∃a0, . . . , an−1, an(ψ(α) = a0 E− . . . E−

an−1 E− an = ψ(β) By hypothesis ∃αn−1(ψ(αn−1) = an−1). Since
ψ(αn−1) E− ψ(β) by hypothesis αn−1 ≤ β. By the inductive hypothe-
sis, α ≤ αn−1. Then, by the transitivity of ≤, α ≤ β.
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Corollary 4.12. There exists a function ψ : ε0 → B such that ψ(α) E
ψ(β) ⇒ α ≤ β.

Proof. The assumptions are lemma 4.10 and 4.9.

Theorem 4.13. Let (A,E) be a quasi–ordering. If there exists a function
ψ : ε0 → A, such that ψ(α) E ψ(β) ⇒ α ≤ β, then ACA0 0 WQ(A).

Proof. Since

ACA0 0 CWF(ε0) ⇒ ACA0 0 ∀F : N → ε0,∃i, j(i < j ∧ F (i) ≤ F (j)) (7)

Proof by absurdity. Let us assume that

ACA0 ` WQ(A) (8)

Let us take any function G : N → ε0.
By hypothesis there exists at least a function ψ : ε0 → A such that

ψ(α) E ψ(β) ⇒ α ≤ β. Now F =̇ψ ◦ G. Thus F : N → A. By our
assumption, equation 8, it must be that ∃i, j(i < j ∧ F (i) ≤ F (j)). This
means that F (i) = ψ(G(i)) ≤ ψ(G(j)) = F (j). Then G(i) < G(j). The
same argument can be repeated for any other function G : N → ε0. Thus it
must be that ACA0 ` CWF(ε0), which is absurd.

Corollary 4.14. ACA0 0 WQ(B)

Proof. Clearly B is a quasi–ordering. The latter assumption is corollary
4.12.

5 Proposition iv

Definition 5.1. There is defined a function d : T → N to represent the
depth of each tree. It is defined as follows.

d(0) = 0

∀n ∈ N d(•n(t0, . . . , tn)) = max{d(t0), . . . , d(tn)}+ 1

Let Qn=̇{t ∈ T |d(t) = n} be the set of all trees of depth exactly n and
Q≤n=̇{t ∈ T |d(t) ≤ n} the set of all trees of height at most n, 0 ∈ Q0

the trivial tree consisting only of a root and •m : Qm+1
n−1 → Qn, injective,
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where •m(a0, . . . , am) yields the tree that has as branches of the root the
trees a0, . . . , an.

We assume that ∀m ∈ N∀a0, . . . , am(0 6= •(a0, . . . , am)).
We define the following relation onQ<n to represent direct embeddability.

Definition 5.2. E− is the smallest possible relation in Q<n, such that:

1. 0 E− 0

2. ∀m∀t0, . . . , tm, 0 E− •m(t0, . . . , tm)

3. ∀mt,ms∀t0, . . . , tmt , s0, . . . , sms , •(s0, . . . , sms) E− •(t0, . . . , tmt) ⇔

(a) ∃i(s E− ti) ∨
(b) ∃F : Ims → Imt

(
∀i, j

(
F (i) = F (j) ⇒ i = j ∧ si E− tF (i)

))
Lemma 5.1. ∀a(a E− a)

Proof. By induction.

• Basis a = 0. Follows by definition.

• Inductive a = •m(a0, . . . , am). ai = ai, i ∈ Im, thus by the inductive
hypothesis, ai E− ai. Thus, by definition of E−, a E− a.

Lemma 5.2. a E− b E− c⇒ a E− c (E− is transitive.)

Proof. By induction on the complexity of a and b and c. If c = 0 then
b E− c implies b = 0 and consequently a = 0. If a = 0 then obviously
a E− c. Otherwise a = •m(a0, . . . , am). Then obviously b 6= 0. Thus
b = •n(b0, . . . , bn). Then also c = •p(c0, . . . , cp). b E− c implies that one of
the following holds:

• b E− ci. By the inductive hypothesis, from a E− b E− ci follows
a E− ci. Thus, by the definition of E− it follows that a E− c.

• There exists an injective F : In → Ip such that for all i ≤ n, bi E− cF (i).
We distinguish again two cases that follow from a E− b:

– a E− bi. Then a E− bi E− cF (i). By the inductive hypothesis,
a E− cF (i), thus, by definition, a E− c.
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– There exists an injective G : Im → In such that for all i ≤ m,
ai E− bG(i). Then for all i ≤ m, we have ai E− bG(i) E− cF (G(i)).
By the inductive hypothesis, for all i ≤ m, ai E− cF (G(i)). Thus
again a E− c.

As a result, from now on E will be written in stead of E−. Obviously, E
is a quasi–ordering. By lemma 4.2 0 ∈ Q<n is a minimal element.

Lemma 5.3. The depth function preserves the order — s E t⇒ d(s) ≤ d(t)

Proof. by induction on the complexity of t.

• Basis t = 0. Then s E− t results in s = 0, thus 0 = d(s) ≤ d(t).

• Inductive t = •n(t0, . . . , tn). Also d(t) = max{d(t0), . . . , d(tn)}+ 1. If
s = 0, then again 0 = d(s) ≤ d(t). Otherwise s = •(s0, . . . , sm) and
d(s) = max{d(s0), . . . , d(sm)} + 1. s E− t implies one of the following
to hold:

– s E ti for some i ≤ n. By the inductive hypothesis, d(s) ≤
d(t(i)) ≤ max{d(ti)|i ≤ n}+ 1 = d(t).

– There exists an injective function F : Im → In and for all i ≤ n,
si E− tF (i). By the inductive hypothesis, d(si) ≤ d(tF (i)). Clearly
d(s) = max{d(si)|i ≤ m} + 1 ≤ max{d(tF (i))|i ≤ m} + 1 ≤
max{d(ti)|i ≤ n}+ 1 = d(t).

Corollary 5.4. Trivially, d(s) > d(t) ⇒ s 6E− t.

Definition 5.3. Each α ≤ ωn ≤ ε0 and thus by the Cantor Normal Form,
α = 0 or ∃!α0 ≥ . . . ≥ αn(α = ωα0 + . . .+ ωαn) with α0 < α. I then define a
function ψn : ωn → Q≤n as follows.

• ψn(0)=̇0.

• ψn(ω
α0 + . . .+ ωαm)=̇ •m (ψn(α0), . . . , ψn(αm)).

Lemma 5.5. For all n ∈ N and for all α ∈ ωn, ψn(α) ∈ Q≤n.
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Proof. By induction on n. If n = 0, then α ∈ ω0 = 1, which implies α =
0. Thus ψ0(α) = 0 ∈ Q≤0. If n > 0, either α = 0, from which follows
α ∈ Q≤n for any n, or one finds the Cantor Normal Form expansion and
writes ψn(α) = •m(ψ(α0), . . . , ψn(αm)). It follows that all for all i < m,
αi ∈ ωn−1. By the inductive hypothesis, all ψ(αi) ∈ Q≤n−1 and as a result
ψ(α) ∈ Q≤n.

Lemma 5.6. For any n ∈ N, for Q≤n it holds that ∀α, β(ψ(α) E ψ(β) ⇒
α ≤ β)

Proof. By induction on β.

• Basis β = 0. Then ψ(β) = 0. Since 0 ∈ Q≤n is a minimal element,
ψ(α) = 0. Then α = 0. Thus α ≤ β for all β.

• Inductive β > 0. We assume ψ(α) E ψ(β). If ψ(α) = 0 then, as
before α ≤ β and our claim is proven. If α > 0 then ψ(α) 6= 0. Then
we can write α = ωα0 + . . . + ωαr and ψ(α) = •r(ψ(α0), . . . , ψ(αr))
and likewise β = ωβ0 + . . .+ ωβp and ψ(β) = •p(ψ(β0), . . . , ψ(βp)). By
definition of E one of the following is the case:

– ∃i(ψ(α) E ψ(βi)). By inductive hypothesis, α ≤ βi. Then, by
lemma 2.1, α ≤ β.

– ∃F : Ir → Ip(F (i) = F (j) ⇒ i = j ∧ ψ(αi) E ψ(βF (i))). By in-
ductive hypothesis αi ≤ βF (i). Again, by lemma 2.1, ωαi ≤ ωβF (i) .
Thus it follows that α = ωα0# . . .#ωαr ≤ ωβF (0)# . . .#ωβF (r) ≤
ωβ0# . . .#ωβp = β.

Definition 5.4. For all n ∈ N, •n0 ∈ T is defined as follows

•0
0 = 0

∀n ∈ N, n > 0 •n0 = •0(•n−1
0 )

It is clear that •n0 ∈ Qn.

Definition 5.5. For all n ∈ N there is defined πn : Q≤n → T as follows:

πn(0) = •n0
∀m ∈ N πn(•m(t0, . . . , tm)) = •m+1(•n−1

0 , t0, . . . , tm)
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Lemma 5.7. π[Q≤n] ⊂ Qn

Proof. One considers any t ∈ Q≤n. If t = 0, then π(t) = •n0 and d(π(t)) = n.
If t 6= 0 then, for some m, t = •m(t0, . . . , tm) with, for all i ≤ m, ti ∈
Q≤n−1 and so d(ti) ≤ n − 1 and n ≥ d(t) = max{d(t0), . . . , d(tm)} + 1.
Then π(t) = •m+1(•n−1

0 , t0, . . . , tm). This implies that d(π(t)) = max{n −
1, d(t0), . . . , d(tm)} + 1. Thus d(π(t)) ≥ n. Also d(π(t)) ≤ n, since d(ti) ≤
n.

Lemma 5.8. For all n ∈ N and s ∈ T it holds that s E •n0 ⇒ ∃m ≤ n(s =
•m0 ).

Proof. Induction on n.

• Basis If n = 0, then •n0 = 0. And s E 0 ⇒ s = 0, and 0 ≤ n.

• Inductive n > 0. If s = 0 then the result follows as above. Otherwise,
for some r ∈ N, s = •r(s0, . . . , sr). Consequently s E •n0 = •(•n−1

0 )
implies that either (1) s E •n−1

0 , which by the inductive hypothesis
implies that s = •m0 for some m ≤ n− 1 ≤ n, thus the claim is proven,
or (2) there exists an injective function F : Ir → I0, which means that
r = 0 and thus s0 E •n−1

0 . By the inductive hypothesis there exists
m′ ∈ N such that s0 = •m′

0 and s = •m′+1
0 .

Lemma 5.9. For any a ∈ T , n > 0, •n0 E a⇒ •n−1
0 E a

Proof. Clearly, for n > 0, •n−1
0 E •n0 = •0(•n−1), since •n−1 E •n−1. Thus,

since E is transitive, •n−1
0 E a.

Lemma 5.10. For all n ∈ N it holds that πn(s) E πn(t) ⇒ s E t.

Proof. By induction on the complexity of t ∈ Q≤n.

• Basis If t = 0 then π(t) = •n0 , and, by lemma 5.8, for some m ∈ N,
s = •m0 . By lemma 5.7 it must be that m = n. Thus s = 0 and s E t.

• Inductive If s = 0 then the argument holds as before. Otherwise t =
•p(t0, . . . , tp) and s = •r(s0, . . . , sr). Then π(t) = •p+1(•n−1

0 , t0, . . . , tp)
and π(s) = •r+1(•n−1

0 , s0, . . . , sr). From π(s) E π(t) it follows that
either one of the following holds:
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– π(s) E •n−1
0 . Thus π(s) = •m0 for some m < n, but then π(s) 6∈

Qn. Absurd.

– There exists i ≤ p, π(s) E ti. Absurd, since d(π(s)) > d(ti).

– There exists an injective function F : Ir+1 → Ip+1. If 0 6∈ F [Ip]
then G : Ip → Ir is defined by G(i) = F (i + 1) and injective and
thus s E t. If 0 ∈ F [Ip] then ∃q ≤ p(F (q) = 0) and sq E •n−1

0 . By
lemma 5.8 for somem < n, sF (q) = •m0 . Furthermore, •n−1

0 E tF (0).
By lemma 5.9, sq E tF (0). Thus the function H : Ip − {0} → Ir
defined such that H(i) = F (i) for all i 6= q and H(q) = F (0) is
still injective and thus, as above, s E t.

Lemma 5.11. For any n ∈ N, there exists a function ψ′ : ωn → Qn such
that it holds in Qn that ∀α, β(ψ′(α) E ψ′(β) ⇒ α ≤ β).

Proof. We take any n ∈ N. By lemma 5.6 there exists a function ψn : ωn →
Q≤n such that ∀α, β ∈ ωn(ψn(α) E ψn(β) ⇒ α ≤ β. By lemma 5.10 there
exists a function π : Q≤n → Qn such that ∀s, t ∈ Q≤n(πn(s) E πn(t) ⇒ s E
t).

Then one defines ψ′
n = πn ◦ ψn. Clearly if ψ′

n(α) E ψ′
n(β), πn(ψn(α)) E

πn(ψn(β)), and thus ψn(α) E ψn(β) and finally α ≤ β.
The argument can be repeated to yield the same result for any n ∈ N.

Lemma 5.12. ACA0 ` ∀nCWF(ωn) implies that ACA0 ` CWF(ε0)

Proof. ACA0 ` CWF(ε0) is equivalent to ACA0 ` ∀F : N → A∃i, j[i < j ∧
F (i) ≤ F (j)]. Assume the denial of the consequent, thus ACA0 ` ∃F : N →
ε0 [∀i, j[i < j ⇒ F (i) � F (j)]]. Take such an F . We argue that ∃nF [N] ⊂
ωn, since (1) the ordering (ε0,≤) is total and hence F (i) � F (j) implies
F (i) > F (j), and (2) from F (0) ∈ ε0 one deduces that F (0) ≤ ωn for some
n ∈ ω.

Thus more precisely F : N → ωn and F is, by assumption, such that
∀i, j[i < j ⇒ F (i) � F (j)] and thus ACA0 0 ∀nCWF(ωn).

Theorem 5.13. ACA0 0 ∀n(WQ(Qn)).

Proof. It is assumed to be known that

ACA0 0 CWF(ε0) ⇒ ACA0 0 ∀F : N → ε0,∃i, j(i < j ∧ F (i) ≤ F (j)) (9)
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Proof by absurdity. Let us assume that

ACA0 ` ∀n(WQ(Qn)) (10)

Let us take, for any n ∈ N, any function G : N → ωn.
By lemma 5.11 there exists at least a function ψ : ωn → Qn such that

ψ(α) E ψ(β) ⇒ α ≤ β. Now F =̇ψ ◦ G. Thus F : N → Qn. By our as-
sumption 8 it must be that ∃i, j(i < j ∧ F (i) ≤ F (j)). This means that
F (i) = ψ(G(i)) ≤ ψ(G(j)) = F (j). Then G(i) ≤ G(j). Due to the arbitrari-
ness of G, it must be that ACA0 ` CWF(ωn). Due to the arbitrariness of n,
ACA0 ` ∀n(CWF(ωn)). By lemma 5.12, we would have ACA0 ` CWF(ε0),
which is absurd.

6 Proposition iii

Definition 6.1. The set of all exactly binary trees B2 ⊂ T will be defined
as the smallest set B2 such that1

0 ∈ B2

t1, t2 ∈ B2 ⇒ •(t1, t2) ∈ B2

Definition 6.2. Then ∼ is the smallest possible relation such that

0 ∼ 0

∀t0, t1, s0, s1 ∈ B2 •(t0, t1) ∼ •(s0, s1) ⇔ (t0 ∼ s0 ∧ t1 ∼ s1) ∨
(t1 ∼ s0 ∧ t0 ∼ s1)

Lemma 6.1. ∼ is an equivalence relation.

Proof. The relation has the required properties:

Reflexive By induction, s = t⇒ s ∼ t.

Symmetric Let s ∼ t. If s = 0 or t = 0 then s = t = 0, otherwise there exists
a smaller relation ∼ with the above conditions. Let s = •(s0, s1) and
t = •(t0, t1). It follows immediately from the definition of ∼ that
s ∼ t⇔ t ∼ s. Thus t ∼ s.

1The subscript will be dropped for • such that •(a0, a1) is taken to represent •1(a0, a1).
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Transitive Induction on the complexity of u. Let s ∼ t and t ∼ u. As above,
if u = 0 then t = 0, therefore s = 0, thus s = t = u = 0 and by
the reflexivity s ∼ u. Otherwise s = •(s0, s1) ∼ •(t0, t1) = t and
t = •(t0, t1) ∼ •(u0, u1) = u. This means ∃i, j ∈ {0, 1} such that
si ∼ t0 and s1−i ∼ t1 and tj ∼ u0 and t1−j ∼ u1. By inductive
hypothesis s0 ∼ u0 and s1 ∼ u1 or s0 ∼ u1 and s1 ∼ u0. Thus s ∼ u.

Definition 6.3. Then there is defined E as the smallest possible relation in
B2 such that

∀t ∈ B2 0 E t

∀s1, s2, t1, t2 ∈ B2 •(s1, s2) E •(t1, t2) ⇔ (•(s1, s2) E t1) ∨
(•(s1, s2) E t2) ∨
(s1 E t1 ∧ s2 E t2) ∨
(s2 E t1 ∧ s1 E t2)

Lemma 6.2. If a′ ∼ a E b ∼ b′, then a′ E b′.

Proof. By induction on the complexity of b ∈ B2.

• Basis b = 0. Then a = 0 and thus a′ = 0, so that a′ E b′ for any
b′ ∈ B2.

• Inductive b = •(b0, b1). Then 0 6= b′ = •(b′0, b′1). From b ∼ b′ one
deduces that b0 ∼ b′0 ∧ b1 ∼ b′1 or b0 ∼ b′1 ∧ b1 ∼ b′0. If a = 0, then, as
before, a′ E b′ for any b′ ∈ B2. Otherwise a = •(a0, a1). Since a E b
one of the following holds:

1. a E b0. If b0 ∼ b′0 then, by the inductive hypothesis, a E b′0. Thus
a′ ∼ a E b′, therefore a′ E b′. If b0 ∼ b′1, then a′ ∼ a E b′1 and
a′ E b′.

2. a E b1. As before.

3. a0 E b0 ∧ a1 E b1. From a ∼ a′ we deduce a0 ∼ a′0 ∧ a1 ∼ a′1 or
a0 ∼ a′1∧a1 ∼ a′0. Let us assume the first case holds, but the proof
of the other is entirely symmetrical. If b0 ∼ b′0 and b1 ∼ b′1 then
a′0 ∼ a0 E b0 ∼ b′0 and a′1 ∼ a1 E b1 ∼ b′1. Hence by the inductive
hypothesis a′0 E b′0 and a′1 E b′1. Thus a′ E b′. If b0 ∼ b′1 and
b1 ∼ b′0 then, by the inductive hypothesis, a′0 E b′1 and a′1 E b′0,
from which again a′ E b′.
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4. a0 E b1 ∧ a1 E b0. As before.

Corollary 6.3. If s ∼ t then s E t

Proof. t E t since E is reflexive. Together with the assumption s ∼ t this
leads to s E t.

In particular, E is reflexive. Also, it is transitive, since lemma 5.2 will
produce the same result now that the only juxtaposing function is the binary
•1. Thus, E is a quasi–ordering.

Lemma 6.4. a ∼ a′ ⇒ d(a) = d(a′)

Proof. From a ∼ a′ follows a E a′, and thus by lemma 5.3, d(a) ≤ d(a′).
Additionally, a′ E a and therefore, as before, d(a′) ≤ d(a) whence d(a) =
d(a′).

By Cantor’s Normal Form,

∀α 6= 0, α < ε0(∃!α1 ≥ . . . ≥ αn(α = (ωα1 + . . .+ ωαn−1) + ωαn))) (11)

In particular, for α 6= 0, α < ε0, ∃β < α,∃γ < α(α = β + ωγ). We define a
function φ : On×On → On as φ(α, β) = α+ ωβ.

Definition 6.4. For each A ∈ B2 and m ∈ ω there is defined by induction:

�A
0 = A

�A
m = •(A,�A

m−1)

Clearly A E �A
n for any n ∈ ω.

Definition 6.5. For each A,B ∈ B we have

A(B) = B If A = 0

A(B) = •(A1, A2(B)) If A = •(A1, A2)

Clearly A = A(0) = 0(A). Also clearly A E B ⇒ A E B(C), for any
C ∈ T .
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Definition 6.6. For each 0 < α < ε0 we write the Cantor Normal Form
α = ωa0 ·m0 + (. . .+ ωan ·mn), with mi < ω and a0 ≥ . . . ≥ an. One defines
α0 = a0 and α1 = ωa1 + . . . + ωan . Then clearly α = ωα0 ·m + α1. We then
define a function ψ : ε0 → B2 by induction on the argument:

ψ(0) = 0

ψ(ωα0 ·m+ α1) = �ψ(α0)
m (ψ(α1))

Lemma 6.5. •(A, 0) 6E A.

Proof. By induction on the complexity of A ∈ B2.

1. A = 0. Clearly •(0, 0) 6E 0.

2. A = •(A1, A2). If •(A, 0) E A then one of the following holds

(a) •(A1, A2) E A1. But then •(A1, 0) E A1, which, by induction,
does not hold.

(b) •(A1, A2) E A2. As above.

(c) •(A, 0) E A1. But then •(A1, 0) E •(•(A1, 0), 0) E •(•(A1, A2)) E
A1, contrary to the inductive hypothesis.

(d) •(A, 0) E A2. Then •(A2, 0) ∼ •(0, A2) E •(A2, 0) E A2, contrary
to the inductive hypothesis.

Corollary 6.6. •(A,B) 6E A

Proof. •(A, 0) E •(A,B) E A is absurd.

Corollary 6.7. A = •(A1, A2) ⇒ A 6E A1.

Lemma 6.8. A E A′ E A⇒ A ∼ A′

Proof. Induction on the complexity of A.

• Basis A = 0. Then from the assumption it follows that A′ = 0. Thus
A ∼ A′.

18



• Inductive A = •(A1, A2). Then from the assumption A E A′ it follows
that A′ 6= 0. Let A′ = •(A′

1, A
′
2). First the claim is A′ 6E Ai, for

i ∈ {1, 2}. This is obvious from A E A′ E A1, which, by corollary 6.7 is
absurd. Likewise A 6E A′

i. Then from the assumption A′ E A∧A E A′

it follows that:

1. A′
1 E A1 ∧ A′

2 E A2.

(a) A1 E A′
1 ∧ A2 E A′

2. Then A1 E A′
1 E A2 E A′

2. Thus,
by the inductive hypothesis, A1 ∼ A′

1 and A2 ∼ A′
2. As a

consequence, A ∼ A′.

(b) A2 E A′
1 ∧ A1 E A′

2. Then A1 E A′
1 E A′

2 E A2 E A′
1 E A1,

thus A1 ∼ A′
1 ∼ A′

2 ∼ A2. As a result, A ∼ A′.

2. A′
2 E A1 ∧ A′

1 E A2. Similarly.

Corollary 6.9. If A′ E A but not A ∼ A′ then A 6E A′.

Lemma 6.10. •(A,B) E •(A,C) ⇒ B E C.

Proof. The assumption implies that one of the following holds:

1. •(A,B) E A. Absurd according to corollary 6.7.

2. •(A,B) E C. Then B E •(A,B) E C.

3. A E A ∧B E C. Clear.

4. A E C ∧B E A. Then B E C.

Corollary 6.11. A(B) E A(C) ⇒ B E C

Proof. Induction on the complexity of A.

• Basis If A = 0 then B = A(B) E A(C) = C

• Inductive If A = •(A1, A2) then we have •(A1, A2(B)) E •(A1, A2(C))
and thus A2(B) E A2(C). By the inductive hypothesis, B E C.
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Definition 6.7. For all A,B ∈ T , A� B ⇔ ∃B1, B2(B = •(B1, B2) ∧ (A E
B1 ∨ A E B2)).

Lemma 6.12. � has the following properties:

1. A 6 A.

2. A�B � C ⇒ A� C.

3. A E B � C ⇒ A� C.

4. A�B ⇒ A E B ∧ A 6∼ B.

Proof. As follows:

1. By corollary 6.7, if A = •(A1, A2) then not A E A1, nor A E A2 (since
then •(A2, A1) ∼ A E A2. Consequently A 6 A.

2. From A � B � C follows that A E Bi E B E Cj, hence A E Cj and
finally A� C.

3. Clearly A E B E Ci implies A E Ci and thus A� C.

4. From A E B we deduce A E Bi, whence A E B. If we would have
A�B and A ∼ B then also B E A�B, whence, by the previous result,
B �B, absurd.

Lemma 6.13. •(A,B) E C(D) ⇒ A� C ∨B � C ∨ •(A,B) E D.

Proof. By induction on the complexity of C.

• Basis C = 0. Then •(A,B) E D, which implies the consequent.

• Inductive C = •(C1, C2). Then •(A,B) E •(C1, C2(D)) implies that
one of the following holds:

1. •(A,B) E C1. Then A E •(A,B) E C1 � C.

2. •(A,B) E C2(D). By the inductive hypothesis, A � C2, whence
A� C, or B � C2, whence B � C, or •(A,B) E D.

3. A E C1 ∧B E C2(D), then A� C.
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4. A E C2(D) ∧B E C1, then B � C.

Corollary 6.14. •(A,A)(B) E A(C) ⇒ •(A,A)(B) E C.

Proof. •(A,A)(B) = •(A,A(B)). The hypothesis implies one of the following
to hold:

1. A� A. Absurd, by lemma 6.7.

2. A(B) � A. Equally A E A(B) � A. Absurd.

3. •(A,A)(B) = •(A,A(B)) E C.

Corollary 6.15. For q > 0, �A
q (B) E A(C) ⇒ �A

q (B) E C.

Proof. For q = 1, this is the lemma. For q > 1, �A
q (B) = •(A,�A

q−1(B)) E
A(C) lemma 6.13 implies that one of the following holds:

1. A� A. Absurd by lemma 6.7.

2. �A
q−1(B) � A. But then A E �A

q−1(B) � A. Absurd.

3. �A
q (B) E C, which is the only remaining option.

Lemma 6.16. For all m > n, �A
m(B) E �A

n (C) ⇒ �A
m−n(B) E �A

0 (C).

Proof. By induction on n.

• Basis. n = 0. Then it is implied that �A
m−0(B) E �A

0 (C) from the
hypothesis.

• Inductive n > 0. Then also m > 0. One can write •(A,�A
m−1)(B) =

•(A,�A
m−1(B)) E �A

n (C) = •(A,�A
n−1(C)). This implies, according

to lemma 6.10, �A
m−1(B) E �A

n−1(C), from which, by the inductive
hypothesis, one concludes �A

m−n(B) E �A
0 (C).
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Lemma 6.17. For m > n, �A
m(B) E �A

n (C) ⇒ �A
m−n(B) E C.

Proof. By lemma 6.16 it follows that �A
m−n(B) E �A

0 (C) = A(C). By corol-
lary 6.15 �A

m−n(B) E C.

Lemma 6.18. ψ(α) E ψ(β) ⇒ α ≤ β

Proof. Induction on β. If β = 0 then ψ(β) = 0, and ψ(α) = 0, from which
α = 0 ≤ β. Otherwise β = ωβ0 ·n+β1. If α = 0 clearly α ≤ β. Let us assume
that α = ωα0 ·m+α1. Then ψ(α) = �ψ(α0)

m (ψ(α1)) and ψ(β) = �ψ(β0)
n (ψ(β1).

Clearly m > 0. Induction on n.

• Basis The case n = 0 will not appear unless referred to from the
inductive clause. ψ(α) = •(ψ(α0),�ψ(α0)

m−1 (ψ(α1))) E ψ(β0)(ψ(β1)) =

�ψ(β0)
n−1 (ψ(β1)), by lemma 6.13, this implies that either (1) ψ(α) E ψ(β1),

whence α ≤ β1 ≤ β, or otherwise at least (2) ψ(α0) E ψ(α) � ψ(β0),
whence α0 ≤ β0. If α0 < β0 then also α ≤ β. If α0 = β0 then
ψ(β0) = ψ(α0) � ψ(β0), absurd.

• Inductive ψ(α) = �ψ(α0)
m (ψ(α1)) and ψ(β) = �ψ(β0)

n (ψ(β1)). ψ(α) ≤
ψ(β) implies that one of the following holds:

1. ψ(α) E ψ(β0). By the inductive hypothesis α ≤ β0 ≤ β

2. ψ(α) E �ψ(β0)
n−1 (ψ(β1)). By the inductive hypothesis of the induc-

tion on n it follows that α ≤ ωβ0 · (n− 1) + β1 ≤ β.

3. ψ(α0) E ψ(β0) and �ψ(α0)
m−1 (ψ(α1)) E �ψ(β0)

n−1 (ψ(β1)). From the
former fact it follows, by the inductive hypothesis, that α0 ≤ β0.
If α0 < β0 then α ≤ β. If, however, α0 = β0, then let us consider
m and n.

(a) If m < n then also α ≤ β.

(b) If m = n then �ψ(α0)
m−1 (ψ(α1)) E �ψ(β0)

m−1 (ψ(β1)), and, following
corollary 6.11, ψ(α1) ≤ ψ(β1), whence α = ωα0 · m + α1 ≤
ωβ0 ·m+ β1 = β.

(c) If m > n then �ψ(α0)
m−1 (ψ(α1)) E �ψ(α0)

n−1 (ψ(β1)). By lemma 6.17

it follows that ψ(ωα0 · (m−n)+α1) = �ψ(α0)
m−n E ψ(β1). By the

inductive hypothesis, ωα0 · (m− n) + α1 ≤ β1. Consequently
α = ωα0 ·m+ α1 ≤ ωα0 · n+ β1 = β.
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4. �ψ(α0)
m−1 (ψ(α1)) E ψ(β0) and ψ(α0) E �ψ(β0)

n−1 (ψ(β1)). Then in par-
ticular ψ(α0) E ψ(β0). From the former assumption it follows

moreover that �ψ(α0)
m−1 (ψ(α1)) E ψ(β0) E �ψ(β0)

n−1 (ψ(β1)). Thus the
previous argument can be repeated.

Corollary 6.19. ψ(α) ∼ ψ(β) ⇒ α = β

Proof. As before, ψ(α) E ψ(β) and thus α ≤ β. Likewise β ≤ α and thus
α = β.

Theorem 6.20. ACA0 0 WQ(B2)

Proof. Theorem 4.13. The assumption is lemma 6.18.

7 Proposition i

The set of all binary trees contains the set of all exactly binary trees. Thus
B2 ⊂ B.

Theorem 7.1. ACA0 0 WQ(B)

Proof. Theorem 4.13. The function given in 6.18 is ψ : ε0 → B2, thus, in
particular, ψ : ε0 → B.

8 Conclusion

In conclusion, the explicit proofs for the four propositions set out in the
introduction have been given. The result helps to illuminate the correspon-
dence between the ordinal numbers below ε0 and the trees in such a way
that what is known about the structure of the former can be extrapolated to
conclusions about the latter.

The propositions are also examples of relevant and meaningful mathe-
matical sentences that are independent of axiomatic systems.
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